用户名: 密码: 验证码:
Structural genomics analysis of uncharacterized protein families overrepresented in human gut bacteria identifies a novel glycoside hydrolase
详细信息    查看全文
  • 作者:Anna Sheydina (49) (50)
    Ruth Y Eberhardt (51) (52)
    Daniel J Rigden (53)
    Yuanyuan Chang (49) (50)
    Zhanwen Li (50)
    Christian C Zmasek (50)
    Herbert L Axelrod (49) (54)
    Adam Godzik (49) (50) (55)

    49. Joint Center for Structural Genomics
    ; 10550 North Torrey Pines Road ; BCC-206 ; La Jolla ; California ; 92037 ; USA
    50. Bioinformatics and Systems Biology Program
    ; Sanford-Burnham Medical Research Institute ; La Jolla ; CA ; 92037 ; USA
    51. Wellcome Trust Sanger Institute
    ; Wellcome Trust Genome Campus ; Hinxton ; Cambridgeshire ; CB10 1SA ; UK
    52. European Molecular Biology Laboratory
    ; European Bioinformatics Institute ; Wellcome Trust Genome Campus ; Hinxton ; Cambridgeshire ; CB10 1SD ; UK
    53. Institute of Integrative Biology
    ; University of Liverpool ; Crown Street ; Liverpool ; L69 7ZB ; UK
    54. Stanford Synchrotron Radiation Lightsource
    ; Menlo Park ; CA ; 94025 ; USA
    55. Center for Research in Biological Systems
    ; University of California ; 9500 Gilman Dr ; La Jolla ; CA ; 92093-0446 ; USA
  • 关键词:Glycoside hydrolase ; Carbohydrate metabolism ; 3D structure ; Protein family ; Protein function prediction ; Domain of unknown function ; DUF
  • 刊名:BMC Bioinformatics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:3,619 KB
  • 参考文献:1. Rosenstiel, P (2013) Stories of love and hate: innate immunity and host-microbe crosstalk in the intestine. Curr Opin Gastroenterol 29: pp. 125-132 CrossRef
    2. Tasse, L, Bercovici, J, Pizzut-Serin, S, Robe, P, Tap, J, Klopp, C, Cantarel, BL, Coutinho, PM, Henrissat, B, Leclerc, M, Dor茅, J, Monsan, P, Remaud-Simeon, M, Potocki-Veronese, G (2010) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res 20: pp. 1605-1612 CrossRef
    3. Quiocho, FA (1986) Carbohydrate-binding proteins: tertiary structures and protein-sugar interactions. Annu Rev Biochem 55: pp. 287-315 CrossRef
    4. Xu, J, Bjursell, MK, Himrod, J, Deng, S, Carmichael, LK, Chiang, HC, Hooper, LV, Gordon, JI (2003) A genomic view of the human-bacteroides thetaiotaomicron symbiosis. Science 299: pp. 2074-2076 CrossRef
    5. Cantarel, BL, Coutinho, PM, Rancurel, C, Bernard, T, Lombard, V, Henrissat, B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37: pp. D233-D238 CrossRef
    6. Henrissat, B, Davies, G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7: pp. 637-644 CrossRef
    7. Punta, M, Coggill, PC, Eberhardt, RY, Mistry, J, Tate, J, Boursnell, C, Pang, N, Forslund, K, Ceric, G, Clements, J, Heger, A, Holm, L, Sonnhammer, EL, Eddy, SR, Bateman, A, Finn, RD (2012) The Pfam protein families database. Nucleic Acids Res 40: pp. D290-D301 CrossRef
    8. Bateman, A, Coggill, P, Finn, RD (2010) DUFs: families in search of function. Acta Crystallogr Sect F Struct Biol Cryst Commun 66: pp. 1148-1152 CrossRef
    9. Jaroszewski, L, Li, Z, Krishna, SS, Bakolitsa, C, Wooley, J, Deacon, AM, Wilson, IA, Godzik, A (2009) Exploration of uncharted regions of the protein universe. PLoS Biol 7: pp. e1000205 CrossRef
    10. Chen, VB, Arendall, WB, Headd, JJ, Keedy, DA, Immormino, RM, Kapral, GJ, Murray, LW, Richardson, JS, Richardson, DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66: pp. 12-21 CrossRef
    11. UniProt, C (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic acids research 40: pp. D71-75
    12. Dusko Ehrlich, S (2010) Meta HITc: [Metagenomics of the intestinal microbiota: potential applications]. Gastroenterol Clin Biol 34: pp. S23-S28 CrossRef
    13. Boraston, AB, Bolam, DN, Gilbert, HJ, Davies, GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382: pp. 769-781
    14. Holm, L, Sander, C (1995) Dali: a network tool for protein structure comparison. Trends Biochem Sci 20: pp. 478-480 CrossRef
    15. Ye, Y, Godzik, A (2005) Multiple flexible structure alignment using partial order graphs. Bioinformatics 21: pp. 2362-2369 CrossRef
    16. Jaroszewski, L, Rychlewski, L, Li, Z, Li, W, Godzik, A (2005) FFAS03: a server for profile--profile sequence alignments. Nucleic Acids Res 33: pp. W284-288 CrossRef
    17. Shallom, D, Shoham, Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6: pp. 219-228 CrossRef
    18. Maksimainen, M, Paavilainen, S, Hakulinen, N, Rouvinen, J (2012) Structural analysis, enzymatic characterization, and catalytic mechanisms of beta-galactosidase from Bacillus circulans sp. alkalophilus. FEBS J 279: pp. 1788-1798 CrossRef
    19. Correia, MA, Mazumder, K, Bras, JL, Firbank, SJ, Zhu, Y, Lewis, RJ, York, WS, Fontes, CM, Gilbert, HJ (2011) Structure and function of an arabinoxylan-specific xylanase. J Biol Chem 286: pp. 22510-22520 CrossRef
    20. Santos, CR, Polo, CC, Correa, JM, Simao Rde, C, Seixas, FA, Murakami, MT (2012) The accessory domain changes the accessibility and molecular topography of the catalytic interface in monomeric GH39 beta-xylosidases. Acta Crystallogr D Biol Crystallogr 68: pp. 1339-1345 CrossRef
    21. Dehal, PS, Joachimiak, MP, Price, MN, Bates, JT, Baumohl, JK, Chivian, D, Friedland, GD, Huang, KH, Keller, K, Novichkov, PS, Dubchak, IL, Alm, EJ, Arkin, AP (2010) MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res 38: pp. D396-400 CrossRef
    22. Got艒, M (1992) Fundamentals of bacterial plant pathology. Academic Press, San Diego
    23. Yin, Y, Mao, X, Yang, J, Chen, X, Mao, F, Xu, Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40: pp. W445-451 CrossRef
    24. Elsliger, MA, Deacon, AM, Godzik, A, Lesley, SA, Wooley, J, Wuthrich, K, Wilson, IA (2010) The JCSG high-throughput structural biology pipeline. Acta Crystallogr Sect F Struct Biol Cryst Commun 66: pp. 1137-1142 CrossRef
    25. McPhillips, TM, McPhillips, SE, Chiu, HJ, Cohen, AE, Deacon, AM, Ellis, PJ, Garman, E, Gonzalez, A, Sauter, NK, Phizackerley, RP, Soltis, SM, Kuhn, P (2002) Blu-Ice and the distributed control system: software for data acquisition and instrument control at macromolecular crystallography beamlines. J Synchrotron Radiat 9: pp. 401-406 CrossRef
    26. Battye, TG, Kontogiannis, L, Johnson, O, Powell, HR, Leslie, AG (2011) iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr 67: pp. 271-281 CrossRef
    Programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50: pp. 760-763
    27. Sheldrick, GM (2008) A short history of SHELX. Acta Crystallogr A 64: pp. 112-122 CrossRef
    28. Vonrhein, C, Blanc, E, Roversi, P, Bricogne, G (2007) Automated structure solution with autoSHARP. Methods Mol Biol 364: pp. 215-230
    29. Langer, G, Cohen, SX, Lamzin, VS, Perrakis, A (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3: pp. 1171-1179 CrossRef
    30. Winn, MD, Murshudov, GN, Papiz, MZ (2003) Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol 374: pp. 300-321 CrossRef
    31. Emsley, P, Cowtan, K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: pp. 2126-2132 CrossRef
    32. Diederichs, K, Karplus, PA (1997) Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat Struct Biol 4: pp. 269-275 CrossRef
    33. Weiss, MS, Hilgenfeld, R (1997) On the use of the merging R factor as a quality indicator for X-ray data. J Appl Crystallogr 30: pp. 203-205 CrossRef
    34. Weiss, MS, Metzner, HJ, Hilgenfeld, R (1998) Two non-proline cis peptide bonds may be important for factor XIII function. FEBS Lett 423: pp. 291-296 CrossRef
    35. Cruickshank, DW (1999) Remarks about protein structure precision. Acta Crystallogr D Biol Crystallogr 55: pp. 583-601 CrossRef
    36. Katoh, K, Kuma, K, Toh, H, Miyata, T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic acids research 33: pp. 511-518 CrossRef
    37. DeLano, W (2002) The PyMOL Molecular Graphics System, Version 1.2r3pre. San Carlos, CA, DeLano Scientific
    38. Gouet, P, Courcelle, E, Stuart, DI, Metoz, F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15: pp. 305-308 CrossRef
    39. Joosten, RP, te Beek, TA, Krieger, E, Hekkelman, ML, Hooft, RW, Schneider, R, Sander, C, Vriend, G (2011) A series of PDB related databases for everyday needs. Nucleic Acids Res 39: pp. D411-419 CrossRef
    40. Desper, R, Gascuel, O (2002) Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J Comput Biol 9: pp. 687-705 CrossRef
    41. Felsenstein, J (1989) PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5: pp. 164-166
    42. Schmidt, HA, Strimmer, K, Vingron, M, von Haeseler, A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: pp. 502-504 CrossRef
    43. Han, MV, Zmasek, CM (2009) phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinformatics 10: pp. 356 CrossRef
  • 刊物主题:Bioinformatics; Microarrays; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Combinatorial Libraries; Algorithms;
  • 出版者:BioMed Central
  • ISSN:1471-2105
文摘
Background Bacteroides spp. form a significant part of our gut microbiome and are well known for optimized metabolism of diverse polysaccharides. Initial analysis of the archetypal Bacteroides thetaiotaomicron genome identified 172 glycosyl hydrolases and a large number of uncharacterized proteins associated with polysaccharide metabolism. Results BT_1012 from Bacteroides thetaiotaomicron VPI-5482 is a protein of unknown function and a member of a large protein family consisting entirely of uncharacterized proteins. Initial sequence analysis predicted that this protein has two domains, one on the N- and one on the C-terminal. A PSI-BLAST search found over 150 full length and over 90 half size homologs consisting only of the N-terminal domain. The experimentally determined three-dimensional structure of the BT_1012 protein confirms its two-domain architecture and structural analysis of both domains suggests their specific functions. The N-terminal domain is a putative catalytic domain with significant similarity to known glycoside hydrolases, the C-terminal domain has a beta-sandwich fold typically found in C-terminal domains of other glycosyl hydrolases, however these domains are typically involved in substrate binding. We describe the structure of the BT_1012 protein and discuss its sequence-structure relationship and their possible functional implications. Conclusions Structural and sequence analyses of the BT_1012 protein identifies it as a glycosyl hydrolase, expanding an already impressive catalog of enzymes involved in polysaccharide metabolism in Bacteroides spp. Based on this we have renamed the Pfam families representing the two domains found in the BT_1012 protein, PF13204 and PF12904, as putative glycoside hydrolase and glycoside hydrolase-associated C-terminal domain respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700