用户名: 密码: 验证码:
An integrated map of HIV genome-wide variation from a population perspective
详细信息    查看全文
  • 作者:Guangdi Li (1) (2)
    Supinya Piampongsant (1) (2)
    Nuno Rodrigues Faria (3)
    Arnout Voet (4)
    Andrea-Clemencia Pineda-Pe帽a (2) (5)
    Ricardo Khouri (2) (6)
    Philippe Lemey (2)
    Anne-Mieke Vandamme (2) (7)
    Kristof Theys (2)

    1. Metabolic Syndrome Research Center
    ; the Second Xiangya Hospital ; Central South University ; Changsha ; Hunan ; China
    2. Rega Institute for Medical Research
    ; Department of Microbiology and Immunology ; KU Leuven ; Leuven ; Belgium
    3. Department of Zoology
    ; University of Oxford ; Oxford ; OX1-3PS ; UK
    4. Zhang IRU
    ; RIKEN Institute Laboratories ; Hirosawa 2-1 ; Wako-shi ; Saitama ; Japan
    5. Clinical and Molecular Infectious Disease Group
    ; Faculty of Sciences and Mathematics ; Universidad del Rosario ; Bogot谩 ; Colombia
    6. LIMI-LIP
    ; Centro de Pesquisa Gon莽alo Moniz ; FIOCRUZ ; Salvador-Bahia ; Brasil
    7. Centro de Mal谩ria e Outras Doen莽as Tropicais and Unidade de Microbiologia
    ; Instituto de Higiene e Medicina Tropical ; Universidade Nova de Lisboa ; Lisbon ; Portugal
  • 关键词:HIV genome ; Genomic diversity ; Conservation ; Peptide inhibitor ; HIV ; human protein interaction ; HIV phylogenetic tree ; HIV inter ; and inter ; clade genetic diversity ; Selective pressure ; Protein multimerization ; Protein intrinsic disorder
  • 刊名:Retrovirology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:12
  • 期:1
  • 全文大小:2,905 KB
  • 参考文献:1. Hemelaar, J (2012) The origin and diversity of the HIV-1 pandemic. Trends Mol Med 18: pp. 182-92 CrossRef
    2. Gaschen, B, Taylor, J, Yusim, K, Foley, B, Gao, F, Lang, D (2002) Diversity considerations in HIV-1 vaccine selection. Science 296: pp. 2354-60 CrossRef
    3. Frankel, AD, Young, JA (1998) HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 67: pp. 1-25 CrossRef
    4. Engelman, A, Cherepanov, P (2012) The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol 10: pp. 279-90 CrossRef
    5. Acosta, EG, Kumar, A, Bartenschlager, R (2014) Revisiting dengue virus-host cell interaction: new insights into molecular and cellular virology. Adv Virus Res 88: pp. 1-109 CrossRef
    6. Perry, CM (2014) Elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate single-tablet regimen (Stribild(R)): a review of its use in the management of HIV-1 infection in adults. Drugs 74: pp. 75-97 CrossRef
    7. Tilton, JC, Doms, RW (2010) Entry inhibitors in the treatment of HIV-1 infection. Antiviral Res 85: pp. 91-100 CrossRef
    8. Fauci, AS, Folkers, GK, Dieffenbach, CW (2013) HIV-AIDS: much accomplished, much to do. Nat Immunol 14: pp. 1104-7 CrossRef
    9. Li, G, Verheyen, J, Rhee, SY, Voet, A, Vandamme, AM, Theys, K (2013) Functional conservation of HIV-1 gag: implications for rational drug design. Retrovirology 10: pp. 126 CrossRef
    10. Stephenson, KE, Barouch, DH (2013) A global approach to HIV-1 vaccine development. Immunol Rev 254: pp. 295-304 CrossRef
    11. Rolland, M, Tovanabutra, S, deCamp, AC, Frahm, N, Gilbert, PB, Sanders-Buell, E (2011) Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial. Nat Med 17: pp. 366-71 CrossRef
    12. Rolland, M, Edlefsen, PT, Larsen, BB, Tovanabutra, S, Sanders-Buell, E, Hertz, T (2012) Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature 490: pp. 417-20 CrossRef
    13. Arien, KK, Vanham, G, Arts, EJ (2007) Is HIV-1 evolving to a less virulent form in humans?. Nat Rev Microbiol 5: pp. 141-51 CrossRef
    14. Herbeck, JT, Rolland, M, Liu, Y, McLaughlin, S, McNevin, J, Zhao, H (2011) Demographic processes affect HIV-1 evolution in primary infection before the onset of selective processes. J Virol 85: pp. 7523-34 CrossRef
    15. Rousseau, CM, Birditt, BA, McKay, AR, Stoddard, JN, Lee, TC, McLaughlin, S (2006) Large-scale amplification, cloning and sequencing of near full-length HIV-1 subtype C genomes. J Virol Methods 136: pp. 118-25 CrossRef
    16. Wang, YE, Li, B, Carlson, JM, Streeck, H, Gladden, AD, Goodman, R (2009) Protective HLA class I alleles that restrict acute-phase CD8+ T-cell responses are associated with viral escape mutations located in highly conserved regions of human immunodeficiency virus type 1. J Virol 83: pp. 1845-55 CrossRef
    17. Brown, BK, Darden, JM, Tovanabutra, S, Oblander, T, Frost, J, Sanders-Buell, E (2005) Biologic and genetic characterization of a panel of 60 human immunodeficiency virus type 1 isolates, representing clades A, B, C, D, CRF01_AE, and CRF02_AG, for the development and assessment of candidate vaccines. J Virol 79: pp. 6089-101 CrossRef
    18. Fernandez-Garcia, A, Cuevas, MT, Munoz-Nieto, M, Ocampo, A, Pinilla, M, Garcia, V (2009) Development of a panel of well-characterized human immunodeficiency virus type 1 isolates from newly diagnosed patients including acute and recent infections. AIDS Res Hum Retroviruses 25: pp. 93-102 CrossRef
    19. Kousiappa, I, Vijver, DA, Kostrikis, LG (2009) Near full-length genetic analysis of HIV sequences derived from Cyprus: evidence of a highly polyphyletic and evolving infection. AIDS Res Hum Retroviruses 25: pp. 727-40 CrossRef
    20. Sanabani, SS, Pessoa, R, Soares de Oliveira, AC, Martinez, VP, Giret, MT, Menezes Succi, RC (2013) Variability of HIV-1 genomes among children and adolescents from Sao Paulo, Brazil. PLoS One 8: pp. e62552 CrossRef
    21. Fernandez-Garcia, A, Revilla, A, Vazquez-de Parga, E, Vinogradova, A, Rakhmanova, A, Karamov, E (2012) The analysis of near full-length genome sequences of HIV type 1 subtype A viruses from Russia supports the monophyly of major intrasubtype clusters. AIDS Res Hum Retroviruses 28: pp. 1340-3 CrossRef
    22. Henn, MR, Boutwell, CL, Charlebois, P, Lennon, NJ, Power, KA, Macalalad, AR (2012) Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection. PLoS Pathog 8: pp. e1002529 CrossRef
    23. Guyader, M, Emerman, M, Sonigo, P, Clavel, F, Montagnier, L, Alizon, M (1987) Genome organization and transactivation of the human immunodeficiency virus type 2. Nature 326: pp. 662-9 CrossRef
    24. Korber, B, Gaschen, B, Yusim, K, Thakallapally, R, Kesmir, C, Detours, V (2001) Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull 58: pp. 19-42 CrossRef
    25. Kuyl, AC, Berkhout, B (2012) The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus. Retrovirology 9: pp. 92 CrossRef
    26. Snoeck, J, Fellay, J, Bartha, I, Douek, DC, Telenti, A (2011) Mapping of positive selection sites in the HIV-1 genome in the context of RNA and protein structural constraints. Retrovirology 8: pp. 87 CrossRef
    27. Mayrose, I, Stern, A, Burdelova, EO, Sabo, Y, Laham-Karam, N, Zamostiano, R (2013) Synonymous site conservation in the HIV-1 genome. BMC Evol Biol 13: pp. 164 CrossRef
    28. Santoro, MM, Perno, CF (2013) HIV-1 Genetic Variability and Clinical Implications. ISRN Microbiol 2013: pp. 481314 CrossRef
    29. Hemelaar, J, Gouws, E, Ghys, PD, Osmanov, S (2011) Isolation W-UNfH, Characterisation: Global trends in molecular epidemiology of HIV-1 during 2000-2007. AIDS 25: pp. 679-89 CrossRef
    30. Xue, B, Mizianty, MJ, Kurgan, L, Uversky, VN (2012) Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 69: pp. 1211-59 CrossRef
    31. Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, Alam SM, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. Engl J Med. 2012;366:1275鈥?6.
    32. Boons, E, Li, G, Vanstreels, E, Vercruysse, T, Pannecouque, C, Vandamme, A-M (2014) A stably expressed llama single-domain intrabody targeting Rev displays broad-spectrum anti-HIV activity. Antiviral Research 112: pp. 91-102 CrossRef
    33. Rambaut, A, Posada, D, Crandall, KA, Holmes, EC (2004) The causes and consequences of HIV evolution. Nat Rev Genet 5: pp. 52-61 CrossRef
    34. Falkowski, PG, Fenchel, T, Delong, EF (2008) The microbial engines that drive Earth's biogeochemical cycles. Science 320: pp. 1034-9 CrossRef
    35. Dunwell, JM, Culham, A, Carter, CE, Sosa-Aguirre, CR, Goodenough, PW (2001) Evolution of functional diversity in the cupin superfamily. Trends Biochem Sci 26: pp. 740-6 CrossRef
    36. Buck, PM, Kumar, S, Singh, SK (2013) On the role of aggregation prone regions in protein evolution, stability, and enzymatic catalysis: insights from diverse analyses. PLoS Comput Biol 9: pp. e1003291 CrossRef
    37. Li, G, Theys, K, Verheyen, J, Pineda-Pena, A, Khouri, R, Piampongsant, S (2015) A new ensemble coevolution system for detecting HIV-1 protein coevolution. Biol Direct 10: pp. 1 CrossRef
    38. Zolla-Pazner, S, Cardozo, T (2010) Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design. Nat Rev Immunol 10: pp. 527-35 CrossRef
    39. Jager, S, Cimermancic, P, Gulbahce, N, Johnson, JR, McGovern, KE, Clarke, SC (2012) Global landscape of HIV-human protein complexes. Nature 481: pp. 365-70
    40. Burnett, JC, Zaia, JA, Rossi, JJ (2012) Creating genetic resistance to HIV. Curr Opin Immunol 24: pp. 625-32 CrossRef
    41. He, Y (2013) Synthesized peptide inhibitors of HIV-1 gp41-dependent membrane fusion. Curr Pharm Des 19: pp. 1800-9 CrossRef
    42. Roberts, KE, Cushing, PR, Boisguerin, P, Madden, DR, Donald, BR (2012) Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLoS Comput Biol 8: pp. e1002477 CrossRef
    43. Durrant, JD, McCammon, JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9: pp. 71 CrossRef
    44. Liu, S, Lu, H, Niu, J, Xu, Y, Wu, S, Jiang, S (2005) Different from the HIV fusion inhibitor C34, the anti-HIV drug Fuzeon (T-20) inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120. J Biol Chem 280: pp. 11259-73 CrossRef
    45. Rolland, M, Nickle, DC, Mullins, JI (2007) HIV-1 group M conserved elements vaccine. PLoS Pathog 3: pp. e157 CrossRef
    46. Kwong, PD, Mascola, JR, Nabel, GJ (2013) Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nat Rev Immunol 13: pp. 693-701 CrossRef
    47. Li, G, Verheyen, J, Theys, K, Piampongsant, S, Laethem, K, Vandamme, AM (2014) HIV-1 Gag C-terminal amino acid substitutions emerging under selective pressure of protease inhibitors in patient populations infected with different HIV-1 subtypes. Retrovirology 11: pp. 79 CrossRef
    48. Pineda-Pena, AC, Faria, NR, Imbrechts, S, Libin, P, Abecasis, AB, Deforche, K (2013) Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: Performance evaluation of the new REGA version 3 and seven other tools. Infect Genet Evol 19: pp. 337-48 CrossRef
    49. Struck, D, Lawyer, G, Ternes, AM, Schmit, JC, Bercoff, DP (2015) COMET: adaptive context-based modeling for ultrafast HIV-1 subtype identification. Nucleic Acids Res 42: pp. e144 CrossRef
    50. Edgar, RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: pp. 1792-7 CrossRef
    51. Gouy, M, Guindon, S, Gascuel, O (2010) SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27: pp. 221-4 CrossRef
    52. Hooft, RW, Vriend, G, Sander, C, Abola, EE (1996) Errors in protein structures. Nature 381: pp. 272 CrossRef
    53. Pinney, JW, Dickerson, JE, Fu, W, Sanders-Beer, BE, Ptak, RG, Robertson, DL (2009) HIV-host interactions: a map of viral perturbation of the host system. AIDS 23: pp. 549-54
    54. Llano, A, Frahm, N, Brander, C (2009) How to optimally define optimal cytotoxic T lymphocyte epitopes in HIV infection. HIV Mol Immunol 2009: pp. 3-24
    55. Buchan, DW, Ward, SM, Lobley, AE, Nugent, TC, Bryson, K, Jones, DT (2010) Protein annotation and modelling servers at University College London. Nucleic Acids Res 38: pp. W563-8 CrossRef
    56. Klose, DP, Wallace, BA, Janes, RW (2010) 2Struc: the secondary structure server. Bioinformatics 26: pp. 2624-5 CrossRef
    57. Ishida, T, Kinoshita, K (2008) Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 24: pp. 1344-8 CrossRef
    58. Peng, K, Radivojac, P, Vucetic, S, Dunker, AK, Obradovic, Z (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7: pp. 208 CrossRef
    59. Deng, X, Eickholt, J, Cheng, J (2009) PreDisorder: ab initio sequence-based prediction of protein disordered regions. BMC Bioinformatics 10: pp. 436 CrossRef
    60. Pettersen, EF, Goddard, TD, Huang, CC, Couch, GS, Greenblatt, DM, Meng, EC (2004) UCSF Chimera鈥揳 visualization system for exploratory research and analysis. J Comput Chem 25: pp. 1605-12 CrossRef
    61. Levy, ED (2010) A simple definition of structural regions in proteins and its use in analyzing interface evolution. J Mol Biol 403: pp. 660-70 CrossRef
    62. Price, MN, Dehal, PS, Arkin, AP (2010) FastTree 2鈥揳pproximately maximum-likelihood trees for large alignments. PLoS One 5: pp. e9490 CrossRef
    63. Pond, SL, Frost, SD, Muse, SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21: pp. 676-9 CrossRef
    64. Spira, S, Wainberg, MA, Loemba, H, Turner, D, Brenner, BG (2003) Impact of clade diversity on HIV-1 virulence, antiretroviral drug sensitivity and drug resistance. J Antimicrob Chemother 51: pp. 229-40 CrossRef
    65. Li G: HIV genome-wide diversity, interaction and coevolution. Doctoral thesis. University of Leuven, Faculty of medicine; 2014. (https://lirias.kuleuven.be/handle/123456789/460408)
  • 刊物主题:Virology; Infectious Diseases; Cancer Research;
  • 出版者:BioMed Central
  • ISSN:1742-4690
文摘
Background The HIV pandemic is characterized by extensive genetic variability, which has challenged the development of HIV drugs and vaccines. Although HIV genomes have been classified into different types, groups, subtypes and recombinants, a comprehensive study that maps HIV genome-wide diversity at the population level is still lacking to date. This study aims to characterize HIV genomic diversity in large-scale sequence populations, and to identify driving factors that shape HIV genome diversity. Results A total of 2996 full-length genomic sequences from 1705 patients infected with 16 major HIV groups, subtypes and circulating recombinant forms (CRFs) were analyzed along with structural, immunological and peptide inhibitor information. Average nucleotide diversity of HIV genomes was almost 50% between HIV-1 and HIV-2 types, 37.5% between HIV-1 groups, 14.7% between HIV-1 subtypes, 8.2% within individual HIV-1 subtypes and less than 1% within single patients. Along the HIV genome, diversity patterns and compositions of nucleotides and amino acids were highly similar across different groups, subtypes and CRFs. Current HIV-derived peptide inhibitors were predominantly derived from conserved, solvent accessible and intrinsically ordered structures in the HIV-1 subtype B genome. We identified these conserved regions in Capsid, Nucleocapsid, Protease, Integrase, Reverse transcriptase, Vpr and the GP41 N terminus as potential drug targets. In the analysis of factors that impact HIV-1 genomic diversity, we focused on protein multimerization, immunological constraints and HIV-human protein interactions. We found that amino acid diversity in monomeric proteins was higher than in multimeric proteins, and diversified positions were preferably located within human CD4 T cell and antibody epitopes. Moreover, intrinsic disorder regions in HIV-1 proteins coincided with high levels of amino acid diversity, facilitating a large number of interactions between HIV-1 and human proteins. Conclusions This first large-scale analysis provided a detailed mapping of HIV genomic diversity and highlighted drug-target regions conserved across different groups, subtypes and CRFs. Our findings suggest that, in addition to the impact of protein multimerization and immune selective pressure on HIV-1 diversity, HIV-human protein interactions are facilitated by high variability within intrinsically disordered structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700