用户名: 密码: 验证码:
The minor C-allele of rs2014355 in ACADS is associated with reduced insulin release following an oral glucose load
详细信息    查看全文
  • 作者:Malene Hornbak (1) (2)
    Karina Banasik (1)
    Johanne M Justesen (1)
    Nikolaj T Krarup (3)
    Camilla H Sandholt (1) (5)
    ?sa Andersson (2)
    Annelli Sandb?k (6)
    Torsten Lauritzen (6)
    Charlotta Pisinger (7) (9)
    Daniel R Witte (8)
    Thorkild IA S?rensen (4) (9)
    Oluf Pedersen (1) (10) (3) (4)
    Torben Hansen (1) (11) (3)
  • 刊名:BMC Medical Genetics
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:177KB
  • 参考文献:1. Newsholme P, Keane D, Welters HJ, Morgan NG: Life and death decisions of the pancreatic beta-cell: the role of fatty acids. / ClinSci(Lond) 2007, 112 (1) : 27-2.
    2. Schaffer JE: Lipotoxicity: when tissues overeat. / CurrOpinLipidol 2003, 14 (3) : 281-87.
    3. Kelley DE, Goodpaster B, Wing RR, Simoneau JA: Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. / AmJPhysiol 1999, 277 (6 Pt 1) : E1130-E1141.
    4. Zhang Y, Xiao M, Niu G, Tan H: Mechanisms of oleic acid deterioration in insulin secretion: role in the pathogenesis of type 2 diabetes. / Life Sci 2005, 77 (17) : 2071-081. CrossRef
    5. Biden TJ, Robinson D, Cordery D, Hughes WE, Busch AK: Chronic effects of fatty acids on pancreatic beta-cell function: new insights from functional genomics. / Diabetes 2004, 53 (Suppl 1) : S159-S165. CrossRef
    6. Kelley DE, Mandarino LJ: Fuel selection in human skeletal muscle in insulin resistance: a reexamination. / Diabetes 2000, 49 (5) : 677-83. CrossRef
    7. Haber EP, Ximenes HM, Procopio J, Carvalho CR, Curi R, Carpinelli AR: Pleiotropic effects of fatty acids on pancreatic beta-cells. / JCell Physiol 2003, 194 (1) : 1-2. CrossRef
    8. Nolan CJ, Madiraju MS, ghingaro-Augusto V, Peyot ML, Prentki M: Fatty acid signaling in the beta-cell and insulin secretion. / Diabetes 2006, 55 (Suppl 2) : S16-S23. CrossRef
    9. Keane D, Newsholme P: Saturated and unsaturated (including arachidonic acid) non-esterified fatty acid modulation of insulin secretion from pancreatic beta-cells. / BiochemSocTrans 2008, 36 (Pt 5) : 955-58.
    10. Gieger C, Geistlinger L, Altmaier E, Hrabe de AM, Kronenberg F, Meitinger T, Mewes HW, Wichmann HE, Weinberger KM, Adamski J, Illig T, Suhre K: Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. / PLoSGenet 2008, 4 (11) : e1000282.
    11. Eaton S, Chatziandreou I, Krywawych S, Pen S, Clayton PT, Hussain K: Short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency associated with hyperinsulinism: a novel glucose-fatty acid cycle? / BiochemSocTrans 2003, 31 (Pt 6) : 1137-139.
    12. Haber EP, Procopio J, Carvalho CR, Carpinelli AR, Newsholme P, Curi R: New insights into fatty acid modulation of pancreatic beta-cell function. / IntRevCytol 2006, 248: 1-1.
    13. Gregersen N, Andresen BS, Corydon MJ, Corydon TJ, Olsen RK, Bolund L, Bross P: Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship. / HumMutat 2001, 18 (3) : 169-89.
    14. Pedersen CB, Kolvraa S, Kolvraa A, Stenbroen V, Kjeldsen M, Ensenauer R, Tein I, Matern D, Rinaldo P, Vianey-Saban C, Ribes A, Lehnert W, Christensen E, Corydon TJ, Andresen BS, Vang S, Bolund L, Vockley J, Bross P, Gregersen N: The ACADS gene variation spectrum in 114 patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency is dominated by missense variations leading to protein misfolding at the cellular level. / HumGenet 2008, 124 (1) : 43-6. CrossRef
    15. Clayton PT, Eaton S, ynsley-Green A, Edginton M, Hussain K, Krywawych S, Datta V, Malingre HE, Berger R, van dBI: Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. / JClinInvest 2001, 108 (3) : 457-65.
    16. Herrema H, Derks TG, van Dijk TH, Bloks VW, Gerding A, Havinga R, Tietge UJ, Muller M, Smit GP, Kuipers F, Reijngoud DJ: Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice. / Hepatology 2008, 47 (6) : 1894-904. CrossRef
    17. Tolwani RJ, Hamm DA, Tian L, Sharer JD, Vockley J, Rinaldo P, Matern D, Schoeb TR, Wood PA: Medium-chain acyl-CoA dehydrogenase deficiency in gene-targeted mice. / PLoSGenet 2005, 1 (2) : e23.
    18. Wood PA, Amendt BA, Rhead WJ, Millington DS, Inoue F, Armstrong D: Short-chain acyl-coenzyme A dehydrogenase deficiency in mice. / PediatrRes 1989, 25 (1) : 38-3. CrossRef
    19. Schuler AM, Wood PA: Mouse models for disorders of mitochondrial fatty acid beta-oxidation. / ILARJ 2002, 43 (2) : 57-5.
    20. Lauritzen T, Griffin S, Borch-Johnsen K, Wareham NJ, Wolffenbuttel BH, Rutten G: The ADDITION study: proposed trial of the cost-effectiveness of an intensive multifactorial intervention on morbidity and mortality among people with Type 2 diabetes detected by screening. / IntJObesRelat Metab Disord 2000, 24 (Suppl 3) : S6-1.
    21. J?rgensen T, Borch-Johnsen K, Thomsen TF, Ibsen H, Glümer C, Pisinger C: A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99. / EurJCardiovascPrevRehabil 2003, 10 (5) : 377-86.
    22. World Health Organization Study G: Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus. In / Tech Rep Ser WHO/NCD/NCS/992. Geneva: World Health Organization; 1999.
    23. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. / Diabetologia 1985, 28 (7) : 412-19. CrossRef
    24. Hansen T, Drivsholm T, Urhammer SA, Palacios RT, Volund A, Borch-Johnsen K, Pedersen O: The BIGTT test: a novel test for simultaneous measurement of pancreatic beta-cell function, insulin sensitivity, and glucose tolerance. / Diabetes Care 2007, 30 (2) : 257-62. CrossRef
    25. Matsuda M, DeFronzo RA: Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. / Diabetes Care 1999, 22 (9) : 1462-470. CrossRef
    26. van Maldegem BT, Duran M, Wanders RJ, Niezen-Koning KE, Hogeveen M, Ijlst L, Waterham HR, Wijburg FA: Clinical, biochemical, and genetic heterogeneity in short-chain acyl-coenzyme A dehydrogenase deficiency. / JAMA 2006, 296 (8) : 943-52. CrossRef
    27. Rinaldo P, Matern D, Bennett MJ: Fatty acid oxidation disorders. / AnnuRevPhysiol 2002, 64: 477-02.
    28. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI, Abecasis GR, Almgren P, Andersen G, Ardlie K, Bostrom KB, Bergman RN, Bonnycastle LL, Borch-Johnsen K, Burtt NP, Chen H, Chines PS, Daly MJ, Deodhar P, Ding CJ, Doney AS, Duren WL, Elliott KS, Erdos MR, Frayling TM, Freathy RM, Gianniny L, Grallert H, Grarup N, Groves CJ, Guiducci C, Hansen T, Herder C, Hitman GA, Hughes TE, Isomaa B, Jackson AU, Jorgensen T, Kong A, Kubalanza K, Kuruvilla FG, Kuusisto J, Langenberg C, Lango H, Lauritzen T, Li Y, Lindgren CM, Lyssenko V, Marvelle AF, Meisinger C, Midthjell K, Mohlke KL, Morken MA, Morris AD, Narisu N, Nilsson P, Owen KR, Palmer CN, Payne F, Perry JR, Pettersen E, Platou C, Prokopenko I, Qi L, Qin L, Rayner NW, Rees M, Roix JJ, Sandbaek A, Shields B, Sjogren M, Steinthorsdottir V, Stringham HM, Swift AJ, Thorleifsson G, Thorsteinsdottir U, Timpson NJ, Tuomi T, Tuomilehto J, Walker M, Watanabe RM, Weedon MN, Willer CJ, Illig T, Hveem K, Hu FB, Laakso M, Stefansson K, Pedersen O, Wareham NJ, Barroso I, Hattersley AT, Collins FS, Groop L, McCarthy MI, Boehnke M, Altshuler D: Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. / Nat Genet 2008, 40 (5) : 638-45. CrossRef
    29. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2350/12/4/prepub
  • 作者单位:Malene Hornbak (1) (2)
    Karina Banasik (1)
    Johanne M Justesen (1)
    Nikolaj T Krarup (3)
    Camilla H Sandholt (1) (5)
    ?sa Andersson (2)
    Annelli Sandb?k (6)
    Torsten Lauritzen (6)
    Charlotta Pisinger (7) (9)
    Daniel R Witte (8)
    Thorkild IA S?rensen (4) (9)
    Oluf Pedersen (1) (10) (3) (4)
    Torben Hansen (1) (11) (3)

    1. Marie Krogh Center for Metabolic Research, Section of Metabolic Genetics, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
    2. Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
    3. Hagedorn Research Institute, Gentofte, Denmark
    5. Novo Nordisk A/S, Medical and Science, Development Projects, Bagsv?rd, Denmark
    6. Department of General Practice, University of Aarhus, Aarhus, Denmark
    7. Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
    9. Medicine Center for Health and Society, Institute of Preventive, Copenhagen University Hospital, Copenhagen, Denmark
    8. Steno Diabetes Center, Gentofte, Denmark
    4. Faculty of Health Sciences, Institute of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
    10. Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark
    11. Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
  • ISSN:1471-2350
文摘
Background A genome-wide association study (GWAS) using metabolite concentrations as proxies for enzymatic activity, suggested that two variants: rs2014355 in the gene encoding short-chain acyl-coenzyme A dehydrogenase (ACADS) and rs11161510 in the gene encoding medium-chain acyl-coenzyme A dehydrogenase (ACADM) impair fatty acid β-oxidation. Chronic exposure to fatty acids due to an impaired β-oxidation may down-regulate the glucose-stimulated insulin release and result in an increased risk of type 2 diabetes (T2D). We aimed to investigate whether the two variants associate with altered insulin release following an oral glucose load or with T2D. Methods The variants were genotyped using KASPar? PCR SNP genotyping system and investigated for associations with estimates of insulin release and insulin sensitivity following an oral glucose tolerance test (OGTT) in a random sample of middle-aged Danish individuals (n ACADS = 4,324; n ACADM = 4,337). The T2D-case-control study involved a total of ~8,300 Danish individuals (n ACADS = 8,313; n ACADM = 8,344). Results In glucose-tolerant individuals the minor C-allele of rs2014355 of ACADS associated with reduced measures of serum insulin at 30 min following an oral glucose load (per allele effect (β) = -3.8% (-6.3%;-1.3%), P = 0.003), reduced incremental area under the insulin curve (β = -3.6% (-6.3%;-0.9%), P = 0.009), reduced acute insulin response (β = -2.2% (-4.2%;0.2%), P = 0.03), and with increased insulin sensitivity ISIMatsuda (β = 2.9% (0.5%;5.2%), P = 0.02). The C-allele did not associate with two other measures of insulin sensitivity or with a derived disposition index. The C-allele was not associated with T2D in the case-control analysis (OR 1.07, 95% CI 0.96-1.18, P = 0.21). rs11161510 of ACADM did not associate with any indices of glucose-stimulated insulin release or with T2D. Conclusions In glucose-tolerant individuals the minor C-allele of rs2014355 of ACADS was associated with reduced measures of glucose-stimulated insulin release during an OGTT, a finding which in part may be mediated through an impaired β-oxidation of fatty acids.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700