用户名: 密码: 验证码:
Ultrafine-grained Ti–Nb–Ta–Zr alloy produced by ECAP at room temperature
详细信息    查看全文
  • 作者:Zhiming Li (1) (2)
    Baolong Zheng (1)
    Yitian Wang (1)
    Troy Topping (1) (3)
    Yizhang Zhou (1)
    Ruslan Z. Valiev (4) (5)
    Aidang Shan (2)
    Enrique J. Lavernia (1)
  • 关键词:Ultrafine ; grained materials ; Titanium alloys ; Equal ; channel angular pressing ; Microstructure ; Mechanical behavior ; Deformation mechanism
  • 刊名:Journal of Materials Science
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:49
  • 期:19
  • 页码:6656-6666
  • 全文大小:2,926 KB
  • 参考文献:1. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54(3):397-25 j.pmatsci.2008.06.004" target="_blank" title="It opens in new window">CrossRef
    2. Elias LM, Schneider SG, Schneider S, Silva HM, Malvisi E (2006) Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys. Mater Sci Eng, A 432(1-):108-12 j.msea.2006.06.013" target="_blank" title="It opens in new window">CrossRef
    3. Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng, A 243(1-):244-49 CrossRef
    4. Sakaguchi N, Niinomi M, Akahori T, Takeda J, Toda H (2005) Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys. Mater Sci Eng, C 25(3):363-69 j.msec.2004.12.014" target="_blank" title="It opens in new window">CrossRef
    5. Kanetaka H, Hosoda H, Shimizu Y, Kudo T, Zhang Y, Kano M, Sano Y, Miyazaki S (2010) In vitro biocompatibility of Ni–free Ti–based shape memory alloys for biomedical applications. Mater Trans 51(10):1944-950 CrossRef
    6. Congqin N, Dongyan D, Kerong D, Wanyin Z, Lei C (2010) The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-5Nb–xZr alloys. Biomed Mater 5 (4):045006 (045008?)-45006 (045008)
    7. Hallab NJ, Vermes C, Messina C, Roebuck KA, Glant TT, Jacobs JJ (2002) Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts. J Biomed Mater Res 60(3):420-33 jbm.10106" target="_blank" title="It opens in new window">CrossRef
    8. Niinomi M (2003) Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-9Nb-3Ta-.6Zr. Biomaterials 24(16):2673-683 CrossRef
    9. Sander B, Raabe D (2008) Texture inhomogeneity in a Ti–Nb–based β–titanium alloy after warm rolling and recrystallization. Mater Sci Eng, A 479(1-):236-47 j.msea.2007.06.077" target="_blank" title="It opens in new window">CrossRef
    10. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51(7):881-81 j.pmatsci.2006.02.003" target="_blank" title="It opens in new window">CrossRef
    11. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53(6):893-79 j.pmatsci.2008.03.002" target="_blank" title="It opens in new window">CrossRef
    12. Lewandowska M, Kurzydlowski K (2008) Recent development in grain refinement by hydrostatic extrusion. J Mater Sci 43(23-4):7299-306 CrossRef
    13. Li Z, Fu L, Fu B, Shan A (2012) Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling. Mater Sci Eng, A 558:309-18 j.msea.2012.08.005" target="_blank" title="It opens in new window">CrossRef
    14. Segal VM (1995) Materials processing by simple shear. Mater Sci Eng, A 197(2):157-64 CrossRef
    15. Ungár T (2001) Dislocation densities, arrangements and character from X-ray diffraction experiments. Mater Sci Eng, A 309-10:14-2 CrossRef
    16. Ungar T, Dragomir I, Revesz A, Borbely A (1999) The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J Appl Crystallogr 32(5):992-002 CrossRef
    17. Ungar T, Gubicza J, Ribarik G, Borbely A (2001) Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. J Appl Crystallogr 34(3):298-10 CrossRef
    18. Lanson B (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals. Clays Clay Miner 45(2):132-46 CrossRef
    19. Karasevskaya OP, Ivasishin OM, Semiatin SL, Matviychuk YV (2003) Deformation behavior of beta–titanium alloys. Mater Sci Eng, A 354(1-):121-32 CrossRef
    20. Abdel-Hady M, Hinoshita K, Morinaga M (2006) General approach to phase stability and elastic properties of β-type Ti–alloys using electronic parameters. Scr Mater 55(5):477-80 j.scriptamat.2006.04.022" target="_blank" title="It opens in new window">CrossRef
    21. Grosdidier T, Combres Y, Gautier E, Philippe MJ (2000) Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy. Metall Mater Trans A 31(4):1095-106 CrossRef
    22. Banerjee S, Mukhopadhyay P (2007) Phase transformations: examples from titanium and zirconium alloys. Elsevier, Oxford
    23. Souza SA, Manicardi RB, Ferrandini PL, Afonso CRM, Ramirez AJ, Caram R (2010) Effect of the addition of Ta on microstructure and properties of Ti–Nb alloys. J Alloy Compd 504(2):330-40 j.jallcom.2010.05.134" target="_blank" title="It opens in new window">CrossRef
    24. Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S (2006) Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater 54(9):2419-429 j.actamat.2006.01.019" target="_blank" title="It opens in new window">CrossRef
    25. Levitas VI, Idesman AV, Olson GB (1998) Continuum modeling of strain-induced martensitic transformation at shear-band intersections. Acta Mater 47(1):219-33 CrossRef
    26. Hanada S, Ozeki M, Izumi O (1985) Deformation characteristics in Β phase Ti–Nb alloys. MTA 16(5):789-95 CrossRef
    27. Zherebtsov SV, Dyakonov GS, Salem AA, Malysheva SP, Salishchev GA, Semiatin SL (2011) Evolution of grain and subgrain structure during cold rolling of commercial-purity titanium. Mater Sci Eng, A 528(9):3474-479 j.msea.2011.01.039" target="_blank" title="It opens in new window">CrossRef
    28. Grosdidier T, Philippe MJ (2000) Deformation induced martensite and superelasticity in a β–metastable titanium alloy. Mater Sci Eng, A 291(1-):218-23 CrossRef
    29. Hao YL, Yang R, Niinomi M, Kuroda D, Zhou YL, Fukunaga K, Suzuki A (2002) Young’s modulus and mechanical properties of Ti-9Nb-3Ta-.6Zr in relation to α-martensite. Metall Mater Trans A. 33 (10):3137-144
    30. Hida M, Sukedai E, Henmi C, Sakaue K, Terauchi H (1982) Stress induced products and ductility due to lattice instability of β phase single crystal of Ti-Mo alloys. Acta Metall 30(8):1471-479 CrossRef
    31. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) Paradox of strength and ductility in metals processed by severe plastic deformation. J Mater Res 17(01):5- CrossRef
    32. Duan X, Sheppard T (2003) Simulation and control of microstructure evolution during hot extrusion of hard aluminium alloys. Mater Sci Eng, A 351(1-):282-92 CrossRef
    33. Califano V, Champagnon B, Fanelli E, Pernice P, Sigaev V, Zakharkin D, Sakharov V, Baskov P (2004) Anisotropy in extruded lanthanum borogermanate glasses? Structural study by Raman spectroscopy. Philos Mag 84(13-6):1639-644 CrossRef
    34. Xu C, Langdon T (2007) The development of hardness homogeneity in aluminum and an aluminum alloy processed by ECAP. J Mater Sci 42(5):1542-550 CrossRef
    35. Su?-Ryszkowska M, Wejrzanowski T, Pakie?a Z, Kurzyd?owski KJ (2004) Microstructure of ECAP severely deformed iron and its mechanical properties. Mater Sci Eng, A 369(1-):151-56 j.msea.2003.10.318" target="_blank" title="It opens in new window">CrossRef
    36. Xu C, Furukawa M, Horita Z, Langdon TG (2005) The evolution of homogeneity and grain refinement during equal-channel angular pressing: a model for grain refinement in ECAP. Mater Sci Eng, A 398(1-):66-6 j.msea.2005.03.083" target="_blank" title="It opens in new window">CrossRef
    37. DeLo DP, Semiatin SL (1999) Finite-element modeling of nonisothermal equal-channel angular extrusion. Metall Mater Trans A 30(5):1391-402 CrossRef
    38. Yamaguchi D, Horita Z, Nemoto M, Langdon TG (1999) Significance of adiabatic heating in equal-channel angular pressing. Scr Mater 41(8):791-96 CrossRef
    39. Bailey JE (1963) The dislocation density, flow stress and stored energy in deformed polycrystalline copper. Philos Mag 8(86):223-36 CrossRef
  • 作者单位:Zhiming Li (1) (2)
    Baolong Zheng (1)
    Yitian Wang (1)
    Troy Topping (1) (3)
    Yizhang Zhou (1)
    Ruslan Z. Valiev (4) (5)
    Aidang Shan (2)
    Enrique J. Lavernia (1)

    1. Department of Chemical Engineering and Materials Science, University of California, Davis, CA, 95616, USA
    2. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
    3. Department of Mechanical Engineering, California State University, Sacramento, CA, 95819, USA
    4. Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa, 450000, Russia
    5. Laboratory for Mechanics of Bulk Nanostructured Materials, Saint Petersburg State University, Saint Petersburg, 198504, Russia
  • ISSN:1573-4803
文摘
To ascertain the influence of severe plastic deformation (SPD) on a Ti–Nb–Ta–Zr (TNTZ) alloy, we studied the room temperature mechanical behavior and microstructural evolution of an ultrafine-grained (UFG) Ti-6Nb-Ta-Zr (wt%) alloy prepared via equal-channel angular pressing (ECAP) of the as-hot-extruded alloy. The tensile behavior, phase composition, grain size, preferred orientation, and dislocation density of the UFG alloy, processed under different conditions, were analyzed and discussed. Compared to the as-hot-extruded alloy, the ECAP-processed TNTZ alloy (3 passes) exhibited approximately 40 and 88?% increase in average ultimate strength and yield strength, respectively. Moreover, as the number of ECAP passes increased from 3 to 6, the TNTZ alloy exhibited not only the expected increase in ultimate and yield strength values, but also a slight increase in elongation. Our results suggest that the deformation mechanisms that govern the behavior of the as-hot-extruded coarse grained (CG) TNTZ alloy during ECAP involve a combination of stress-induced martensitic transformation and dislocation activity. In the case of the ECAP-processed UFG TNTZ alloy, the deformation mechanism is proposed to involve two components: first, dislocation activity induced by the strain field imposed during ECAP; and second, the formation of α-martensite phase during the early stages of ECAP which eventually transforms into β phase during continued deformation. We propose that the deformation mechanism governing the room temperature behavior of the TNTZ alloy strongly depends on the grain size of the β phase.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700