用户名: 密码: 验证码:
Miniaturized implantable sensors for in vivo localized temperature measurements in mice during cold exposure
详细信息    查看全文
  • 作者:R. Padovani ; T. Lehnert ; P. Cettour-Rose ; R. Doenlen ; J. Auwerx…
  • 关键词:Miniaturized temperature sensor ; Implantable temperature sensor ; Thermistor calibration ; In vivo localized sensing ; Brown adipose tissue ; Cold exposure analysis
  • 刊名:Biomedical Microdevices
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:18
  • 期:1
  • 全文大小:1,572 KB
  • 参考文献:M. D. Alexander, K. T. B. MacQuarrie, Ground Water Monit. Remediat. 25, 75 (2005)CrossRef
    D. D. Bae, P. L. Brown, E. A. Kiyatkin, Brain Res. 1154, 61 (2007)CrossRef
    K. C. Bicego, R. C. H. Barros, L. G. S. Branco, Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 147, 616 (2007)CrossRef
    C. M. L. Burnett, J. L. Grobe, Am. J. Physiol. Endocrinol. Metab. 305, E916 (2013)CrossRef
    C. M. L. Burnett, J. L. Grobe, Mol. Metab. 3, 460 (2014)CrossRef
    C. Cohade, M. Osman, H. K. Pannu, R. L. Wahl, J. Nucl. Med. 44, 170 (2003)
    B. Conti, M. Sanchez-Alavez, R. Winsky-Sommerer, M. C. Morale, J. Lucero, S. Brownell, V. Fabre, S. Huitron-Resendiz, S. Henriksen, E. P. Zorrilla, L. de Lecea, T. Bartfai, Science 314, 825 (2006)CrossRef
    J. D. Crane, E. P. Mottillo, T. H. Farncombe, K. M. Morrison, G. R. Steinberg, Mol. Metab. 3, 490 (2014)CrossRef
    R. G. da Silva, A. S. Campos Maia, Principles of Animal Biometeorology (Springer, 2013)
    S. DeBow, F. Colbourne, Methods 30, 167 (2003)CrossRef
    F. A. Duck, Physical Properties of Tissues a Comprehensive Reference Book (Academic Press, London, 1990)
    M. L. Gantner, B. C. Hazen, J. Conkright, A. Kralli, Proc. Natl. Acad. Sci. U. S. A. 111, 11870 (2014)CrossRef
    S. Gatti, J. Beck, G. Fantuzzi, T. Bartfai, C. A. Dinarello, Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R702 (2002)CrossRef
    C. J. Gordon, J. Therm. Biol. 34, 213 (2009)CrossRef
    C. J. Gordon, J. Therm. Biol. 37, 654 (2012)CrossRef
    M. J. Harms, J. Ishibashi, W. Wang, H.-W. Lim, S. Goyama, T. Sato, M. Kurokawa, K.-J. Won, P. Seale, Cell Metab. 19, 593 (2014)CrossRef
    IUPS Thermal Commission, J. Therm. Biol. 28(75) (2003)
    N. Kataoka, H. Hioki, T. Kaneko, K. Nakamura, Cell Metab. 20, 346 (2014)CrossRef
    E. M. Knight, T. M. Brown, S. G眉m眉sg枚z, J. C. M. Smith, E. J. Waters, S. M. Allan, C. B. Lawrence, Dis. Model. Mech. 6, 160 (2013)CrossRef
    D.M. Lateef, G. Abreu-Vieira, C. Xiao, M.L. Reitman, Am. J. Physiol. Endocrinol. Metab. E681 (2014)
    J. A. Levine, Public Health Nutr. 8, 1123 (2005)CrossRef
    P. Lomax, Nature 210, 854 (1966)CrossRef
    L. E. Mount, J. Physiol. 217, 315 (1971)CrossRef
    J. Nedergaard, B. Cannon, Cell Metab. 11, 268 (2010)CrossRef
    J. Nedergaard, T. Bengtsson, B. Cannon, Am. J. Physiol. Endocrinol. Metab. 293, E444 (2007)CrossRef
    S. Poole, J. D. Stephenson, Physiol. Behav. 18, 203 (1977)CrossRef
    M. Saito, Obes. Res. Clin. Pract. 7, e432 (2013)CrossRef
    M. Saito, Y. Okamatsu-Ogura, M. Matsushita, K. Watanabe, T. Yoneshiro, J. Nio-Kobayashi, T. Iwanaga, M. Miyagawa, T. Kameya, K. Nakada, Y. Kawai, M. Tsujisaki, Diabetes 58, 1526 (2009)CrossRef
    M. Sanchez-Alavez, S. Alboni, B. Conti, Age Dordr. Neth. 33, 89 (2011)CrossRef
    J. R. Speakman, Integr. Physiol. 4, 34 (2013)
    J. S. Steinhart, S. R. Hart, Deep Sea Res. Oceanogr. Abstr. 15, 497 (1968)
    M. H. Tsch枚p, J. R. Speakman, J. R. S. Arch, J. Auwerx, J. C. Br眉ning, L. Chan, R. H. Eckel, R. V. Farese Jr., J. E. Galgani, C. Hambly, M. A. Herman, T. L. Horvath, B. B. Kahn, S. C. Kozma, E. Maratos-Flier, T. D. M眉ller, H. M眉nzberg, P. T. Pfluger, L. Plum, M. L. Reitman, K. Rahmouni, G. I. Shulman, G. Thomas, C. R. Kahn, E. Ravussin, Nat. Methods 9, 57 (2012)CrossRef
    M. J. Vosselman, W. D. van Marken Lichtenbelt, P. Schrauwen, Mol. Cell. Endocrinol. 379, 43 (2013)CrossRef
    J. E. Walker, Angew. Chem. Int. Ed. 37, 2308 (1998)CrossRef
    J. B. d. V. Weir, J. Physiol. 109, 1 (1949)CrossRef
    T. J. J. Zethof, J. A. M. Van Der Heyden, J. T. B. M. Tolboom, B. Olivier, Physiol. Behav. 55, 109 (1994)CrossRef
  • 作者单位:R. Padovani (1)
    T. Lehnert (1)
    P. Cettour-Rose (2)
    R. Doenlen (2)
    J. Auwerx (3)
    M. A. M. Gijs (1)

    1. Laboratory of Microsystems, Ecole Polytechnique F茅d茅rale de Lausanne, CH-1015, Lausanne, Switzerland
    2. Center of PhenoGenomics, Ecole Polytechnique F茅d茅rale de Lausanne, CH-1015, Lausanne, Switzerland
    3. Laboratory of Integrative Systems Physiology, Ecole Polytechnique F茅d茅rale de Lausanne, CH-1015, Lausanne, Switzerland
  • 刊物类别:Engineering
  • 刊物主题:Biomedical Engineering
    Biophysics and Biomedical Physics
    Nanotechnology
    Engineering Fluid Dynamics
  • 出版者:Springer Netherlands
  • ISSN:1572-8781
文摘
We report on in vivo temperature measurements performed in mice at two specific sites of interest in the animal body over a period of several hours. In particular, the aim of this work was to monitor mouse metabolism during cold exposure, and to record possible temperature differences between the body temperature measured in the abdomen and the temperature of the brown adipose tissue (BAT) situated in the interscapular area. This approach is of biological interest as it may help unravelling the question whether biochemical activation of BAT is associated with local increase in metabolic heat production. For that purpose, miniaturized thermistor sensors have been accurately calibrated and implanted in the BAT and in the abdominal tissue of mice. After 1 week of recovery from surgery, mice were exposed to cold (6 掳C) for a maximum duration of 6 h and the temperature was acquired continuously from the two sensors. Control measurements with a conventional rectal probe confirmed good performance of both sensors. Moreover, two different mouse phenotypes could be identified, distinguishable in terms of their metabolic resistance to cold exposure. This difference was analyzed from the thermal point of view by computational simulations. Our simple physical model of the mouse body allowed to reproduce the global evolution of hypothermia and also to explain qualitatively the temperature difference between abdomen and BAT locations. While with our approach, we have demonstrated the importance and feasibility of localized temperature measurements on mice, further optimization of this technique may help better identify local metabolism variations. Keywords Miniaturized temperature sensor Implantable temperature sensor Thermistor calibration In vivo localized sensing Brown adipose tissue Cold exposure analysis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700