用户名: 密码: 验证码:
Responses of a riceheat rotation agroecosystem to experimental warming
详细信息    查看全文
文摘
Climate change is likely to affect agroecosystems in many ways. This study was performed to investigate how a riceinter wheat rotation agroecosystem in southeast China would respond to global warming. By using an infrared heater system, the soil surface temperature was maintained about 1.5 above ambient milieu over 3years. In the third growing season (2009010), the evapotranspiration (ET) rate, crop production, soil respiration, and soil carbon pool were monitored. The ET rate was 23% higher in the warmed plot as compared to the control plot during the rice paddy growing season, and the rice grain yield was 16.3% lower, but there was no significant difference in these parameters between the plots during the winter wheat-growing season. The phenology of the winter wheat shifted under experimental warming, and ET may decrease late in the winter wheat-growing season. Experimental warming significantly enhanced soil respiration, with mean annual soil respiration rates of 2.570.17 and 1.960.06ol CO2 m2s1 observed in the warmed and control plots, respectively. After 3 years of warming, a significant decrease in the total organic carbon was observed, but only in the surface soil (0cm). Warming also stimulated the belowground biomass, which may have compensated for any heat-induced loss of soil organic carbon. Paddy rice seemed to be more vulnerable to warming than winter wheat in terms of water-use efficiency and grain production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700