用户名: 密码: 验证码:
miRNome of inflammatory breast cancer
详细信息    查看全文
  • 作者:Diana V Maltseva (17)
    Vladimir V Galatenko (17) (18)
    Timur R Samatov (17)
    Svetlana O Zhikrivetskaya (17)
    Nadezhda A Khaustova (17)
    Ilya N Nechaev (19)
    Maxim U Shkurnikov (19)
    Alexey E Lebedev (17)
    Irina A Mityakina (17) (19)
    Andrey D Kaprin (19)
    Udo Schumacher (20)
    Alexander G Tonevitsky (18) (19)

    17. SRC Bioclinicum
    ; Ugreshskaya str 2/85 ; 115088 ; Moscow ; Russia
    18. Moscow State University
    ; Leninskie Gory ; 119991 ; Moscow ; Russia
    19. P.A. Hertsen Moscow Research Oncology Institute
    ; 2nd Botkinskii p. 3 ; Moscow ; 125284 ; Russia
    20. Department of Anatomy and Experimental Morphology
    ; University Cancer Center ; University Medical Center Hamburg-Eppendorf ; Martinistr. 52 ; Hamburg ; D-20246 ; Germany
  • 关键词:Inflammatory breast cancer ; miRNA ; Microarray ; tp53 mutational status
  • 刊名:BMC Research Notes
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:1
  • 全文大小:723 KB
  • 参考文献:1. Hance, KW, Anderson, WF, Devesa, SS, Young, HA, Levine, PH (2005) Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the National Cancer Institute. J Natl Cancer Inst 97: pp. 966-975 CrossRef
    2. Yamauchi, H, Woodward, WA, Valero, V, Alvarez, RH, Lucci, A, Buchholz, TA, Iwamoto, T, Krishnamurthy, S, Yang, W, Reuben, JM, Hortob谩gyi, GN, Ueno, NT (2012) Inflammatory breast cancer: what we know and what we need to learn. Oncologist 17: pp. 891-899 12-0039" target="_blank" title="It opens in new window">CrossRef
    3. Boutet, G (2012) Breast inflammation: clinical examination, aetiological pointers. Diagn Interv Imaging 93: pp. 78-84 12.001" target="_blank" title="It opens in new window">CrossRef
    4. Bertucci, F, Finetti, P, Rougemont, J, Charafe-Jauffret, E, Nasser, V, Loriod, B, Camerlo, J, Tagett, R, Tarpin, C, Houvenaeghel, G, Nguyen, C, Maraninchi, D, Jacquemier, J, Houlgatte, R, Birnbaum, D, Viens, P (2004) Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy. Cancer Res 64: pp. 8558-8565 CrossRef
    5. Van Laere, S, Van der Auwera, I, Van den Eynden, G, Van Hummelen, P, van Dam, P, Van Marck, E, Vermeulen, PB, Dirix, L (2007) Distinct molecular phenotype of inflammatory breast cancer compared to non-inflammatory breast cancer using Affymetrix-based genome-wide gene-expression analysis. Br J Cancer 97: pp. 1165-1174 CrossRef
    6. Van Laere, S, Beissbarth, T, Van der Auwera, I, Van den Eynden, G, Trinh, XB, Elst, H, Van Hummelen, P, van Dam, P, Van Marck, E, Vermeulen, P, Dirix, L (2008) Relapse-free survival in breast cancer patients is associated with a gene expression signature characteristic for inflammatory breast cancer. Clin Cancer Res 14: pp. 7452-7460 CrossRef
    7. Iwamoto, T, Bianchini, G, Qi, Y, Cristofanilli, M, Lucci, A, Woodward, WA, Reuben, JM, Matsuoka, J, Gong, Y, Krishnamurthy, S, Valero, V, Hortobagyi, GN, Robertson, F, Symmans, WF, Pusztai, L, Ueno, NT (2011) Different gene expressions are associated with the different molecular subtypes of inflammatory breast cancer. Breast Cancer Res Treat 125: pp. 785-795 1280-6" target="_blank" title="It opens in new window">CrossRef
    8. Shkurnikov, MY, Nechaev, IN, Khaustova, NA, Krainova, NA, Savelov, NA, Grinevich, VN, Saribekyan, EK (2013) Expression profile of inflammatory breast cancer. Bull Exp Biol Med 155: pp. 667-672 CrossRef
    9. Van Laere, SJ, Ueno, NT, Finetti, P, Vermeulen, P, Lucci, A, Robertson, FM, Marsan, M, Iwamoto, T, Krishnamurthy, S, Masuda, H, van Dam, P, Woodward, WA, Viens, P, Cristofanilli, M, Birnbaum, D, Dirix, L, Reuben, JM, Bertucci, F (2013) Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets. Clin Cancer Res 19: pp. 4685-4696 12-2549" target="_blank" title="It opens in new window">CrossRef
    10. Turchinovich, A, Samatov, TR, Tonevitsky, AG, Burwinkel, B (2013) Circulating miRNAs: cell-cell communication function?. Front Genet 4: pp. 119 CrossRef
    11. Calin, GA, Croce, CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6: pp. 857-866 CrossRef
    12. Van der Auwera, I, Limame, R, van Dam, P, Vermeulen, PB, Dirix, LY, Van Laere, SJ (2010) Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer 103: pp. 532-541 CrossRef
    13. Lerebours, F, Cizeron-Clairac, G, Susini, A, Vacher, S, Mouret-Fourme, E, Belichard, C, Brain, E, Alberini, JL, Spyratos, F, Lidereau, R, Bieche, I (2013) miRNA expression profiling of inflammatory breast cancer identifies a 5-miRNA signature predictive of breast tumor aggressiveness. Int J Cancer 133: pp. 1614-1623 CrossRef
    14. Edge, S, Byrd, DR, Compton, CC, Fritz, AG, Greene, FL, Trotti, A (2010) AJCC Cancer Staging Manual. Springer, New York, NY
    15. Affymetrix庐 Expression Console鈩?Software 1.4 User Manual. 漏Affymetrix, Inc 2014.http://media.affymetrix.com/support/downloads/manuals/expression_console_userguide.pdf
    16. Irizarry, RA, Hobbs, B, Collin, F, Beazer-Barclay, YD, Antonellis, KJ, Scherf, U, Speed, TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: pp. 249-264 CrossRef
    17. Bolstad, BM, Irizarry, RA, Astrand, M, Speed, TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: pp. 185-193 CrossRef
    18. Tukey, JW (1977) Exploratory data analysis. Addison-Wesley, Reading
    19. Gentleman, RC, Carey, VJ, Bates, DM, Bolstad, B, Dettling, M, Dudoit, S, Ellis, B, Gautier, L, Ge, Y, Gentry, J, Hornik, K, Hothorn, T, Huber, W, Iacus, S, Irizarry, R, Leisch, F, Li, C, Maechler, M, Rossini, AJ, Sawitzki, G, Smith, C, Smyth, G, Tierney, L, Yang, JY, Zhang, J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: pp. R80 CrossRef
    20. Smyth, GK Limma: linear models for microarray data. In: Gentleman, R, Carey, V, Dudoit, S, Irizarry, R, Huber, W eds. (2005) Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer, New York, pp. 397-420 CrossRef
    21. Smyth, GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: pp. Article 3
    Heatmap Online Service.
    22. Warnes, GR, Bolker, B, Bonebakker, L, Gentleman, R, Huber, W, Liaw, A, Lumley, T, Maechler, M, Magnusson, A, Moeller, S, Schwartz, M, Venables, B (2014) R package gplots.
    23. Vergoulis, T, Vlachos, IS, Alexiou, P, Georgakilas, G, Maragkakis, M, Reczko, M, Gerangelos, S, Koziris, N, Dalamagas, T, Hatzigeorgiou, AG (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40: pp. D222-229 CrossRef
    24. Xiao, F, Zuo, Z, Cai, G, Kang, S, Gao, X, Li, T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37: pp. D105-110 CrossRef
    25. Hsu, SD, Tseng, YT, Shrestha, S, Lin, YL, Khaleel, A, Chou, CH, Chu, CF, Huang, HY, Lin, CM, Ho, SY, Jian, TY, Lin, FM, Chang, TH, Weng, SL, Liao, KW, Liao, IE, Liu, CC, Huang, HD (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 42: pp. D78-D85 1266" target="_blank" title="It opens in new window">CrossRef
    26. Huang, DW, Sherman, BT, Lempicki, RA (2009) Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 4: pp. 44-57 CrossRef
    27. Huang, DW, Sherman, BT, Lempicki, RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: pp. 1-13 CrossRef
    28. Galatenko, VV, Lebedev, AE, Nechaev, IN, Shkurnikov, MY, Tonevitskii, EA, Podol'skii, VE (2014) On the construction of medical test systems using greedy algorithm and support vector machine. Bull Exp Biol Med 156: pp. 706-709 CrossRef
    29. Cortes, C, Vapnik, V (1995) Support-vector networks. Machine Learning 20: pp. 273-297
    30. Karatzoglou, A, Smola, A, Hornik, K, Zeileis, A (2004) kernlab - An S4 Package for Kernel Methods in R. J Stat Software 11: pp. 1-20
    31. Kuhn, M (2014) R package Caret.
    32. Enerly, E, Steinfeld, I, Kleivi, K, Leivonen, SK, Aure, MR, Russnes, HG, R酶nneberg, JA, Johnsen, H, Navon, R, R酶dland, E, M盲kel盲, R, Naume, B, Per盲l盲, M, Kallioniemi, O, Kristensen, VN, Yakhini, Z, B酶rresen-Dale, AL (2011) miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One 6: pp. e16915 CrossRef
    33. Persson, H, Kvist, A, Rego, N, Staaf, J, Vallon-Christersson, J, Luts, L, Loman, N, Jonsson, G, Naya, H, Hoglund, M, Borg, A, Rovira, C (2011) Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene. Cancer Res 71: pp. 78-86 CrossRef
    34. Schrauder, MG, Strick, R, Schulz-Wendtland, R, Strissel, PL, Kahmann, L, Loehberg, CR, Lux, MP, Jud, SM, Hartmann, A, Hein, A, Bayer, CM, Bani, MR, Richter, S, Adamietz, BR, Wenkel, E, Rauh, C, Beckmann, MW, Fasching, PA (2012) Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS One 7: pp. e29770 CrossRef
    35. Gong, C, Qu, S, Liu, B, Pan, S, Jiao, Y, Nie, Y, Su, F, Liu, Q, Song, E (2013) MiR-106b expression determines the proliferation paradox of TGF-尾 in breast cancer cells. Oncogene.
    36. Wang, B, Li, J, Sun, M, Sun, L, Zhang, X (2014) MiRNA expression in breast cancer varies with lymph node metastasis and other clinicopathologic features. IUBMB Life.
    37. Sand, M, Skrygan, M, Sand, D, Georgas, D, Gambichler, T, Hahn, SA, Altmeyer, P, Bechara, FG (2013) Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res 351: pp. 85-98 12-1514-5" target="_blank" title="It opens in new window">CrossRef
    38. Bae, J, Won, M, Kim, DY, Kim, JH, Kim, YM, Kim, YT, Nam, JH, Suh, DS (2012) Identification of differentially expressed microRNAs in endometrial cancer cells after progesterone treatment. Int J Gynecol Cancer 22: pp. 561-565 CrossRef
    39. Zha, R, Guo, W, Zhang, Z, Qiu, Z, Wang, Q, Ding, J, Huang, S, Chen, T, Gu, J, Yao, M, He, X (2014) Genome-wide screening identified that miR-134 acts as a metastasis suppressor by targeting integrin 尾1 in hepatocellular carcinoma. PLoS One 9: pp. e87665 CrossRef
    40. Jima, DD, Zhang, J, Jacobs, C, Richards, KL, Dunphy, CH, Choi, WW, Au, WY, Srivastava, G, Czader, MB, Rizzieri, DA, Lagoo, AS, Lugar, PL, Mann, KP, Flowers, CR, Bernal-Mizrachi, L, Naresh, KN, Evens, AM, Gordon, LI, Luftig, M, Friedman, DR, Weinberg, JB, Thompson, MA, Gill, JI, Liu, Q, How, T, Grubor, V, Gao, Y, Patel, A, Wu, H, Zhu, J (2010) Hematologic Malignancies Research Consortium. Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs. Blood 116: pp. e118-127 CrossRef
    41. Vimalraj, S, Miranda, PJ, Ramyakrishna, B, Selvamurugan, N (2013) Regulation of breast cancer and bone metastasis by microRNAs. Dis Markers 35: pp. 369-387 1248" target="_blank" title="It opens in new window">CrossRef
    42. Imam, JS, Plyler, JR, Bansal, H, Prajapati, S, Bansal, S, Rebeles, J, Chen, HI, Chang, YF, Panneerdoss, S, Zoghi, B, Buddavarapu, KC, Broaddus, R, Hornsby, P, Tomlinson, G, Dome, J, Vadlamudi, RK, Pertsemlidis, A, Chen, Y, Rao, MK (2012) Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization. PLoS One 7: pp. e52397 CrossRef
    43. Tahiri, A, Leivonen, SK, L眉ders, T, Steinfeld, I, Ragle Aure, M, Geisler, J, M盲kel盲, R, Nord, S, Riis, ML, Yakhini, Z, Kleivi Sahlberg, K, B酶rresen-Dale, AL, Per盲l盲, M, Bukholm, IR, Kristensen, VN (2014) Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breast tumors. Carcinogenesis 35: pp. 76-85 CrossRef
    44. Jiang, L, He, D, Yang, D, Chen, Z, Pan, Q, Mao, A, Cai, Y, Li, X, Xing, H, Shi, M, Chen, Y, Bruce, IC, Wang, T, Jin, L, Qi, X, Hua, D, Jin, J, Ma, X (2014) MiR-489 regulates chemoresistance in breast cancer via epithelial mesenchymal transition pathway. FEBS Lett 588: pp. 2009-2015 CrossRef
    45. Yu, F, Yao, H, Zhu, P, Zhang, X, Pan, Q, Gong, C, Huang, Y, Hu, X, Su, F, Lieberman, J (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131: pp. 1109-1123 CrossRef
    46. Hu, B, Ying, X, Wang, J, Piriyapongsa, J, Jordan, IK, Sheng, J, Yu, F, Zhao, P, Li, Y, Wang, H, Ng, WL, Hu, S, Wang, X, Wang, C, Zheng, X, Li, W, Curran, WJ, Wang, Y (2014) Identification of a tumor-suppressive human-specific microRNA within the FHIT tumor-suppressor gene. Cancer Res 74: pp. 2283-2294 CrossRef
    47. Cairo, S, Wang, Y, de Reyni猫s, A, Duroure, K, Dahan, J, Redon, MJ, Fabre, M, McClelland, M, Wang, XW, Croce, CM, Buendia, MA (2010) Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci U S A 107: pp. 20471-20476 CrossRef
    48. Yanaihara, N, Caplen, N, Bowman, E, Seike, M, Kumamoto, K, Yi, M, Stephens, RM, Okamoto, A, Yokota, J, Tanaka, T, Calin, GA, Liu, CG, Croce, CM, Harris, CC (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: pp. 189-198 CrossRef
    49. Pollard, JW (2008) Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 84: pp. 623-630 CrossRef
    50. Mohamed, MM, El-Ghonaimy, EA, Nouh, MA, Schneider, RJ, Sloane, BF, El-Shinawi, M (2014) Cytokines secreted by macrophages isolated from tumor microenvironment of inflammatory breast cancer patients possess chemotactic properties. Int J Biochem Cell Biol 46: pp. 138-147 CrossRef
    51. Cobos Jim茅nez, V, Bradley, EJ, Willemsen, AM, van Kampen, AH, Baas, F, Kootstra, NA (2014) Next-generation sequencing of microRNAs uncovers expression signatures in polarized macrophages. Physiol Genomics 46: pp. 91-103 CrossRef
    52. Alberts, B, Johnson, A, Lewis, J, Raff, M (2007) Molecular Biology of the Cell. Garland Science, New York, NY
    53. Broderick, JA, Salomon, WE, Ryder, SP, Aronin, N, Zamore, PD (2011) Argonaute protein identity and pairing geometry determine cooperativity in mammalian RNA silencing. RNA 17: pp. 1858-1869 1261/rna.2778911" target="_blank" title="It opens in new window">CrossRef
    54. Arvidsson, Y, Andersson, E, Bergstr枚m, A, Andersson, MK, Altiparmak, G, Illerskog, AC, Ahlman, H, Lamazhapova, D, Nilsson, O (2008) Amyloid precursor-like protein 1 is differentially upregulated in neuroendocrine tumours of the gastrointestinal tract. Endocr Relat Cancer 15: pp. 569-581 CrossRef
    55. Srivastava, M, Khurana, P, Sugadev, R (2012) Lung cancer signature biomarkers: tissue specific semantic similarity based clustering of digital differential display (DDD) data. BMC Res Notes 5: pp. 617 CrossRef
    56. Ma, W, Zhang, TF, Lu, P, Lu, SH (2014) Partial least squares based gene expression analysis in estrogen receptor positive and negative breast tumors. Eur Rev Med Pharmacol Sci 18: pp. 212-216
    57. Somlo, G, Chu, P, Frankel, P, Ye, W, Groshen, S, Doroshow, JH, Danenberg, K, Danenberg, P (2008) Molecular profiling including epidermal growth factor receptor and p21 expression in high-risk breast cancer patients as indicators of outcome. Ann Oncol 19: pp. 1853-1859 CrossRef
    58. Hussey, GS, Chaudhury, A, Dawson, AE, Lindner, DJ, Knudsen, CR, Wilce, MC, Merrick, WC, Howe, PH (2011) Identification of an mRNP complex regulating tumorigenesis at the translational elongation step. Mol Cell 41: pp. 419-431 CrossRef
    59. Maltseva, DV, Khaustova, NA, Fedotov, NN, Matveeva, EO, Lebedev, AE, Shkurnikov, MU, Galatenko, VV, Schumacher, U, Tonevitsky, AG (2013) High-throughput identification of reference genes for research and clinical RT-qPCR analysis of breast cancer samples. J Clin Bioinforma 3: pp. 13 CrossRef
    60. Jiang, W, Newsham, IF (2006) The tumor suppressor DAL-1/4.1B and protein methylation cooperate in inducing apoptosis in MCF-7 breast cancer cells. Mol Cancer 5: pp. 4 CrossRef
    61. Khaidakov, M, Mitra, S, Kang, BY, Wang, X, Kadlubar, S, Novelli, G, Raj, V, Winters, M, Carter, WC, Mehta, JL (2011) Oxidized LDL receptor 1 (OLR1) as a possible link between obesity, dyslipidemia and cancer. PLoS One 6: pp. e20277 CrossRef
    62. Szczyrba, J, Nolte, E, Hart, M, D枚ll, C, Wach, S, Taubert, H, Keck, B, Kremmer, E, St枚hr, R, Hartmann, A, Wieland, W, Wullich, B, Gr盲sser, FA (2013) Identification of ZNF217, hnRNP-K, VEGF-A and IPO7 as targets for microRNAs that are downregulated in prostate carcinoma. Int J Cancer 132: pp. 775-784 CrossRef
    63. Ju, JH, Yang, W, Lee, KM, Oh, S, Nam, K, Shim, S, Shin, SY, Gye, MC, Chu, IS, Shin, I (2013) Regulation of cell proliferation and migration by keratin19-induced nuclear import of early growth response-1 in breast cancer cells. Clin Cancer Res 19: pp. 4335-4346 12-3295" target="_blank" title="It opens in new window">CrossRef
    64. Tu, SH, Chang, CC, Chen, CS, Tam, KW, Wang, YJ, Lee, CH, Lin, HW, Cheng, TC, Huang, CS, Chu, JS, Shih, NY, Chen, LC, Leu, SJ, Ho, YS, Wu, CH (2010) Increased expression of enolase alpha in human breast cancer confers tamoxifen resistance in human breast cancer cells. Breast Cancer Res Treat 121: pp. 539-553 CrossRef
    65. Chen, S, Cai, J, Zhang, W, Zheng, X, Hu, S, Lu, J, Xing, J, Dong, Y (2014) Proteomic identification of differentially expressed proteins associated with the multiple drug resistance in methotrexate-resistant human breast cancer cells. Int J Oncol 45: pp. 448-458
    66. Killian, A, Sarafan-Vasseur, N, Sesbo眉茅, R, Le Pessot, F, Blanchard, F, Lamy, A, Laurent, M, Flaman, JM, Fr茅bourg, T (2006) Contribution of the BOP1 gene, located on 8q24, to colorectal tumorigenesis. Genes Chromosomes Cancer 45: pp. 874-881 CrossRef
    67. Morishita, A, Zaidi, MR, Mitoro, A, Sankarasharma, D, Szabolcs, M, Okada, Y, D'Armiento, J, Chada, K (2013) HMGA2 is a driver of tumor metastasis. Cancer Res 73: pp. 4289-4299 12-3848" target="_blank" title="It opens in new window">CrossRef
    68. Sun, M, Song, CX, Huang, H, Frankenberger, CA, Sankarasharma, D, Gomes, S, Chen, P, Chen, J, Chada, KK, He, C, Rosner, MR (2013) HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proc Natl Acad Sci U S A 110: pp. 9920-9925 CrossRef
    69. Linderholm, B, Lindh, B, Tavelin, B, Grankvist, K, Henriksson, R (2000) p53 and vascular-endothelial-growth-factor (VEGF) expression predicts outcome in 833 patients with primary breast carcinoma. Int J Cancer 89: pp. 51-62 120)89:1<51::AID-IJC9>3.0.CO;2-8" target="_blank" title="It opens in new window">CrossRef
    70. Mohammed, RA, Green, A, El-Shikh, S, Paish, EC, Ellis, IO, Martin, SG (2007) Prognostic significance of vascular endothelial cell growth factors -A, -C and -D in breast cancer and their relationship with angio- and lymphangiogenesis. Br J Cancer 96: pp. 1092-1100 CrossRef
    71. Cao, YEG, Wang, E, Pal, K, Dutta, SK, Bar-Sagi, D, Mukhopadhyay, D (2012) VEGF exerts an angiogenesis-independent function in cancer cells to promote their malignant progression. Cancer Res 72: pp. 3912-3918 CrossRef
    72. Petitjean, A, Achatz, MI, Borresen-Dale, AL, Hainaut, P, Olivier, M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26: pp. 2157-2165 1210302" target="_blank" title="It opens in new window">CrossRef
    73. Langer酶d, A, Zhao, H, Borgan, 脴, Nesland, JM, Bukholm, IR, Ikdahl, T, K氓resen, R, B酶rresen-Dale, AL, Jeffrey, SS (2007) TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res 9: pp. R30 CrossRef
  • 刊物主题:Biomedicine general; Medicine/Public Health, general; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1756-0500
文摘
Background Inflammatory breast cancer (IBC) is an extremely malignant form of breast cancer which can be easily misdiagnosed. Conclusive prognostic IBC molecular biomarkers which are also providing the perspectives for targeted therapy are lacking so far. The aim of this study was to reveal the IBC-specific miRNA expression profile and to evaluate its association with clinicopathological parameters. Methods miRNA expression profiles of 13 IBC and 17 non-IBC patients were characterized using comprehensive Affymetrix GeneChip miRNA 3.0 microarray platform. Bioinformatic analysis was used to reveal IBC-specific miRNAs, deregulated pathways and potential miRNA targets. Results 31 differentially expressed miRNAs characterize IBC and mRNAs regulated by them and their associated pathways can functionally be attributed to IBC progression. In addition, a minimal predictive set of 4 miRNAs characteristic for the IBC phenotype and associated with the TP53 mutational status in breast cancer patients was identified. Conclusions We have characterized the complete miRNome of inflammatory breast cancer and found differentially expressed miRNAs which reliably classify the patients to IBC and non-IBC groups. We found that the mRNAs and pathways likely regulated by these miRNAs are highly relevant to cancer progression. Furthermore a minimal IBC-related predictive set of 4 miRNAs associated with the TP53 mutational status and survival for breast cancer patients was identified.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700