用户名: 密码: 验证码:
Comparisons of diffuse optical imaging between direct-current and amplitude-modulation instrumentations
详细信息    查看全文
  • 作者:Liang-Yu Chen ; Jhao-Ming Yu ; Min-Cheng Pan…
  • 关键词:Diffuse optical imaging ; Direct ; current NIR ; Amplitude ; modulation NIR ; Phantom design ; Slab ; type imaging module
  • 刊名:Optical and Quantum Electronics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:48
  • 期:2
  • 全文大小:1,799 KB
  • 参考文献:Arridge, S.R., Lionheart, W.R.B.: Nonuniqueness in diffusion-based optical tomography. Opt. Lett. 23, 882–884 (1998)CrossRef ADS
    Arridge, S.R., Schweiger, M.: Photon-measurement density functions. Part 2: finite-element-method calculations. Appl. Opt. 34, 8026–8037 (1995)CrossRef ADS
    Cao, N., Nehorai, A., Jacob, M.: Image reconstruction for diffuse optical tomography using sparsity regularization expectation–maximization algorithm. Opt. Express 15, 13695–13708 (2007)CrossRef ADS
    Chen, L.-Y., Pan, M.-C., Pan, M.-C.: Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography. Appl. Opt. 51, 43–54 (2012)CrossRef ADS
    Chen, L.-Y., Pan, M.-C., Pan, M.-C.: Flexible near-infrared diffuse optical tomography with varied weighting functions of edge-preserving regularization. Appl. Opt. 52, 1173–1182 (2013)CrossRef ADS
    Corlu, A., Choe, R., Durduran, T., Lee, K., Schweiger, M., Arridge, S.R., Hillman, E.M.C., Yodh, A.G.: Diffuse optical tomography with spectral constraints and wavelength optimization. Appl. Opt. 44, 2082–2093 (2005)CrossRef ADS
    Dehghani, H., Srinivasan, S., Pogue, B.W., Gibson, A.: Numerical modelling and image reconstruction in diffuse optical tomography. Philos. Trans. R. Soc. A 367, 3073–3093 (2009)CrossRef ADS MathSciNet MATH
    Douiri, A., Schweiger, M., Riley, J., Arridge, S.R.: Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information. Meas. Sci. Technol. 18, 87–95 (2007)CrossRef ADS
    Enfield, L.C., Gibson, A.P., Everdell, N.L., Delpy, D.T., Schweiger, M., Arridge, S.R., Richardson, C., Keshtgar, M., Douek, M., Hebden, J.C.: Three-dimensional time-resolved optical mammography of the uncompressed breast. Appl. Opt. 46, 3628–3638 (2007)CrossRef ADS
    Fang, Q., Carp, S.A., Selb, J., Boverman, G., Zhang, Q., Kopans, D.B., Moore, R.H., Miller, E.L., Brooks, D.H., Boas, D.A.: Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression. IEEE Trans. Med. Imaging 28, 30–42 (2009)CrossRef
    Gibson, A., Dehghani, H.: Diffuse optical imaging. Philos. Trans. R. Soc. A 367, 3055–3072 (2009)CrossRef ADS MathSciNet MATH
    Harrach, B.: On uniqueness in diffuse optical tomography. Inverse Probl. 25, 055010 (2009)CrossRef ADS MathSciNet
    Hiltunen, P., Prince, S.J.D., Arridge, S.: A combined reconstruction-classification method for diffuse optical tomography. Phys. Med. Biol. 54, 6457–6476 (2009)CrossRef
    Iftimia, N., Jiang, H.: Quantitative optical image reconstruction of turbid media by use of direct-current measurements. Appl. Opt. 39, 5256–5261 (2000)CrossRef ADS
    Jiang, H.: Diffuse Optical Tomography—Principles and Applications. CRC Press, Boca Raton (2011)
    Jiang, H., Iftimia, N.V., Xu, Y., Eggert, J.A., Fajardo, L.L., Klove, K.L.: Near-infrared optical imaging of the breast with model-based reconstruction. Acad. Radiol. 9, 186–194 (2002)CrossRef
    Li, A., Miller, E.L., Kilmer, M.E., Brukilacchio, T.J., Chaves, T., Stott, J., Zhang, Q., Wu, T., Chorlton, M., Moore, R.H., Kopans, D.B., Boas, D.A.: Tomographic optical breast imaging guided by three-dimensional mammography. Appl. Opt. 42, 5181–5190 (2003)CrossRef ADS
    Pan, M.-C., Pan, M.-C.: Rapid convergence on the inverse solution regularized with the Lorentzian distributed function for near infrared continuous wave diffuse optical tomography. J. Biomed. Opt. 15, 016014 (2010)CrossRef ADS
    Pan, M.-C., Chen, C.-H., Chen, L.-Y., Pan, M.-C., Shyr, Y.-M.: Highly resolved diffuse tomography: a systematic approach using high-pass filtering for value-preserved images. J. Biomed. Opt. 13, 024022 (2008)CrossRef ADS
    Pan, M.-C., Chen, C.-H., Pan, M.-C., Shyr, Y.-M.: Near infrared tomographic system based on high angular resolution mechanism—design, calibration, and performance. Measurement 42, 377–389 (2009)CrossRef
    Paulsen, K.D., Jiang, H.: Spatially varying optical property reconstruction using a finite element diffusion equation approximation. Med. Phys. 22, 691–701 (1995)CrossRef
    Pei, Y., Graber, H.L., Barbour, R.L.: Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography. Opt. Express 9, 97–109 (2001)CrossRef ADS
    Pogue, B.W., McBride, T.O., Prewitt, J., Osterberg, U.L., Paulsen, K.D.: Spatially variant regularization improves diffuse optical tomography. Appl. Opt. 38, 2950–2961 (1999)CrossRef ADS
    Schweiger, M., Arridge, S.R., Nissila, I.: Gauss–Newton method for image reconstruction in diffuse optical tomography. Phys. Med. Biol. 50, 2365–2386 (2005)CrossRef
    Semenov, S.: Microwave tomography: review of the progress towards clinical applications. Philos. Trans. R. Soc. A 367, 3021–3042 (2009)CrossRef ADS MATH
    Spinelli, L., Torricelli, A., Pefferi, A., Taroni, P., Danesini, G.M., Cubeddu, R.: Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography. J. Biomed. Opt. 9, 1137–1142 (2004)CrossRef ADS
    Srinivasan, S., Pogue, B.W., Jiang, S., Dehghani, H., Paulsen, K.D.: Spectrally constrained chromophore and scattering NIR tomography provides quantitative and robust reconstruction. Appl. Opt. 44, 1858–1869 (2005)CrossRef ADS
    Xu, Y., Gu, X., Khan, T., Jiang, H.: Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data. Appl. Opt. 41, 5427–5437 (2002)CrossRef ADS
    Yu, J.-M., Chen, L.-Y., Chiang, H.-C., Pan, M.-C., Sun, S.-Y., Chou, C.-C., Pan, M.-C.: Parallel scanning architecture for mammogram-based diffuse optical imaging. ASME Trans. J. Med. Devices 7(2), 020936 (2013)CrossRef
    Zhang, Q., Brukilacchio, T.J., Li, A., Stott, J.J., Chaves, T., Hillman, E., Wu, T., Chorlton, M., Rafferty, E., Moore, R.H., Kopans, D.B., Boas, D.A.: Coregistered tomographic X-ray and optical breast imaging: initial results. J. Biomed. Opt. 10, 024033 (2005)CrossRef ADS
  • 作者单位:Liang-Yu Chen (1) (2)
    Jhao-Ming Yu (1)
    Min-Cheng Pan (3)
    Sheng-Yih Sun (4)
    Chia-Cheng Chou (4)
    Min-Chun Pan (1) (2)

    1. Department of Mechanical Engineering, National Central University, Taoyuan City, 320, Taiwan, R.O.C.
    2. Graduate Institute of Biomedical Engineering, National Central University, Taoyuan City, 320, Taiwan, R.O.C.
    3. Department of Electronic Engineering, Tung-Nan University, New Taipei City, 222, Taiwan, R.O.C.
    4. Tao-Yuan General Hospital, Taoyuan City, 330, Taiwan, R.O.C.
  • 刊物主题:Optics, Optoelectronics, Plasmonics and Optical Devices; Electrical Engineering; Characterization and Evaluation of Materials; Computer Communication Networks;
  • 出版者:Springer US
  • ISSN:1572-817X
文摘
Breast tissues like fatty and fibroglandular ones are adipose mainly and possess high scattering nature, so that they diffuse and make the light approximately uniformly distribute over the measured cross-section besides absorbing to reduce the light intensity. Strong cause-and-effect relationships exist between absorption and intensity decay, and between scattering and phase delay as well. Thereby in a diffuse optical imaging system it is a general practice to estimate absorption coefficients from the measured intensity since it reflects most of the absorption property. This study aims to illustrate that both μ a and μ s ′ images of breast can be reconstructed by only direct-current data reliably to a certain extent. Varied sets of phantom design with assigned absorption/scattering properties for inclusion and background were synthesized and image reconstructed to demonstrate this perspective. Moreover, we employed a slab-type diffuse optical imaging system with a dual-direction direct-current NIR measurement module, where reconstructed images were compared between with and without reflectance NIR data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700