用户名: 密码: 验证码:
Improving Continuous-Variable Quantum Key Distribution Using the Heralded Noiseless Linear Amplifier with Source in the Middle
详细信息    查看全文
  • 作者:Jianwu Liang ; Jian Zhou ; Jinjing Shi
  • 关键词:Continuous ; variable ; Quantum key distribution ; Noiseless linear amplifier ; Source in the middle
  • 刊名:International Journal of Theoretical Physics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:55
  • 期:2
  • 页码:1156-1166
  • 全文大小:430 KB
  • 参考文献:1.Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lutkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)ADS CrossRef
    2.Zhang, H., Fang, J., He, G.: Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers. Phys. Rev. A 86, 022338 (2012)ADS CrossRef
    3.Qian, Y., Shen, Z., He, G., Zeng, G.: Quantum-cryptography network via continuous-variable graph states. Phys. Rev. A 86, 052333 (2012)ADS CrossRef
    4.Ma, X.-C., Sun, S.-H., Jiang, M.-S., Gui, M., Liang, L.-M.: Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 042335 (2014)ADS CrossRef
    5.Zhang, Y.-C., Li, Z., Song, Y., Wanyi, G., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90, 052325 (2014)ADS CrossRef
    6.Bennett, C.H., Brassard, G.: Proceedings of IEEE International Conference Computers, System and Signal Processing, pp. 175–179. IEEE, New York (1984)
    7.Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADS CrossRef
    8.Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., R.lph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)ADS CrossRef
    9.Weedbrook, C.: Continuous-variable quantum key distribution with entanglement in the middle. Rev. Mod. Phys. 87, 022308 (2013)CrossRef
    10.Garcia-Patron, R.: Ph.D. thesis, Universite Libre de Bruxelles, Bruxelles (2007)
    11.Blandino, R., Leverrier, A., Barbieri, M., Etesse, J., Grangier, P., Tualle-Brouri, R.: Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Phys. Rev. 86, 012327 (2012)ADS CrossRef
    12.Ralph, T.C., Lund, A.P.: Nondeterministic noiseless linear amplification of quantum systems. In: Lvovsky, A. (ed.) Quantum Communication Measurement and Computing Proceedings of 9th International Conference, pp. 155–160. AIP Conf. Proc. No. 1110, AIP, New York (2009). arXiv:0809.​0326
    13.Ferreyrol, F., Blandino, R., Barbieri, M., Tualle-Brouri, R., Grangier, P.: Experimental realization of a nondeterministic optical noiseless amplifier. Phys. Rev. A 83, 063801 (2011)ADS CrossRef
    14.Zavatta, A., Fiurasek, J., Bellini, M.: A quantum delivery note. Nature Photon. Lett. 5, 52 (2011)ADS CrossRef
    15.Walk, N., Ralph, T.C., Symul, T., Lam, P.K.: Security of continuous-variable quantum cryptography with Gaussian postselection. Phys. Rew. A 87, 020303(R) (2013)ADS CrossRef
    16.Ralph, T.C.: Quantum error correction of continuous-variable states against Gaussian noise. Phys. Rev. A 84, 022339 (2011)ADS CrossRef
    17.Navascués, M., Acín, A.: Security bounds for continuous variable quantum key distribution. Phys. Rev. Lett. 94, 020505 (2005)ADS CrossRef
    18.Garcéa-Patrín, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)ADS CrossRef
    19.Pirandola, S., Braunstein, S.L., Lloyd, S.: Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett. 101, 200504 (2008)ADS CrossRef
    20.Renner, R., Cirac, J.I.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102, 110504 (2009)ADS CrossRef
    21.Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)ADS CrossRef
    22.Grosshans, F., Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature (London) 421, 238 (2003)ADS CrossRef
    23.Grosshans, F., Cerf, N.J., Wenger, J., Tualle-Brouri, R., Grangier, Ph.: Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Quantum Inf. Comput. 3, 535 (2003)MATH MathSciNet
    24.Häseler, H., Moroder, T., Lütkenhaus, N.: Testing quantum devices: Practical entanglement verification in bipartite optical systems. Phys. Rev. A 77, 032303 (2008)ADS CrossRef
    25.Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504 (2004)ADS CrossRef
    26.Gerry, C.C., Knight, P.L.: Introductory quantum optics. Cambridge University Press, Cambridge (2005)
    27.Walk, N., Ralph, T.C.: Gaussian post-selection for continuous variable quantum cryptography, quantum physics. arXiv:1206.​0936v2 [quant-ph] 6 Jun 2012
    28.Fossier, S., Diamanti, E., Debuisschert, T., Tualle-Brouri, R., Grangier, P.: Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B: Mol. Opt. Phys. 42, 114014 (2009)ADS CrossRef
    29.He, G., Zhu, J., Zeng, G.: Quantum secure communication using continuous variable Einstein-Podolsky-Rosen correlations. Phys. Rev. A 73, 012314 (2006)ADS CrossRef
    30.Huang, P., He, G., Fang, J., Zeng, G.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87, 012317 (2013)ADS CrossRef
    31.Wang, X.-Y., Bai, Z.-L., Wang, S.-F., Li, Y.-M., Peng, K.-C.: Four-state modulation continuous variable quantum key distribution over 30 km fibre and analysis of excess noise. Chin. Phys. Lett. 30(1), 010305 (2013)ADS CrossRef
    32.Wang, X.-Y., Bai, Z.-L., Du, P.-Y., Li, Y.-M., Peng, K.-C.: Ultrastable fiber-based time-domain balanced homodyne detector for quantum communication. Chin. Phys. Lett. 29(12), 124202 (2012)ADS CrossRef
  • 作者单位:Jianwu Liang (1)
    Jian Zhou (1)
    Jinjing Shi (1)
    Guangqiang He (2)
    Ying Guo (1)

    1. School of Information Science & Engineering, Central South University, Changsha, 410083, China
    2. State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai, 200030, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Quantum Physics
    Elementary Particles and Quantum Field Theory
    Mathematical and Computational Physics
  • 出版者:Springer Netherlands
  • ISSN:1572-9575
文摘
We characterize the efficiency of the practical continuous-variable quantum key distribution (CVQKD) while inserting the heralded noiseless linear amplifier (NLA) before detectors to increase the secret key rate and the maximum transmission distance in Gaussian channels. In the heralded NLA-based CVQKD system, the entanglement source is only placed in the middle while the two participants are unnecessary to trust their source. The intensities of source noise are sensitive to the tunable NLA with the parameter g in a suitable range and can be stabilized to the suitable constant values to eliminate the impact of channel noise and defeat the potential attacks. Simulation results show that there is a well balance between the secret key rate and the maximum transmission distance with the tunable NLA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700