用户名: 密码: 验证码:
One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability
详细信息    查看全文
  • 作者:Yang Zhao (1)
    Dongliang Gao (2)
    Jiangfeng Ni (1)
    Lijun Gao (1)
    Juan Yang (2)
    Yan Li (2)
  • 关键词:bismuth sulfide ; carbon coating ; nanomesh ; lithium storage
  • 刊名:Nano Research
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:7
  • 期:5
  • 页码:765-773
  • 全文大小:
  • 参考文献:1. Yu, Y.; Jin, C. H.; Wang, R. H.; Chen, Q.; Peng, L. M. High-quality ultralong Bi2S3 nanowires: Structure, growth, and properties. / J. Phys. Chem. B 2005, / 109, 18772-8776. CrossRef
    2. Peter, L. M.; Wijayantha, K. G. U.; Riley, D. J.; Waggett, J. P. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. / J. Phys. Chem. B 2003, / 107, 8378-381. CrossRef
    3. Konstantatos, G.; Levina, L.; Tang, J.; Sargent, E. H. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. / Nano Lett. 2008, / 8, 4002-006. CrossRef
    4. Wu, T.; Zhou, X.; Zhang, H.; Zhong, X. Bi2S3 Nanostructures: A new photocatalyst. / Nano Res. 2010, / 3, 379-86. CrossRef
    5. Patrick, C. E.; Giustino, F. Structural and electronic properties of semiconductor-sensitized solar-cell interfaces. / Adv. Funct. Mater. 2011, / 21, 4663-667. CrossRef
    6. Rath, A. K.; Bernechea, M.; Martinez, L.; Konstantatos, G. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2S3 nanocrystals. / Adv. Mater. 2011, / 23, 3712-717. CrossRef
    7. Zhang, H.; Yang, L.; Liu, Z.; Ge, M.; Zhou, Z.; Chen, W.; Li, Q.; Liu, L. Facet-dependent activity of bismuth sulfide as low-cost counter-electrode materials for dye-sensitized solar cells. / J. Mater. Chem. 2012, / 22, 18572-8577. CrossRef
    8. Luo, S.; Chai, F.; Zhang, L.; Wang, C.; Li, L.; Liu, X.; Su, Z. Facile and fast synthesis of urchin-shaped Fe3O4@Bi2S core-shell hierarchical structures and their magnetically recyclable photocatalytic activity. / J. Mater. Chem. 2012, / 22, 4832-836. CrossRef
    9. Cademartiri, L.; Scotognella, F.; O’Brien, P. G.; Lotsch, B. V.; Thomson, J.; Petrov, S.; Kherani, N. P.; Ozin, G. A. Cross-linking Bi2S3 ultrathin nanowires: A platform for nanostructure formation and biomolecule detection. / Nano Lett. 2009, / 9, 1482-486. CrossRef
    10. Wang, D. B.; Shao, M. W.; Yu, D. B.; Li, G. P.; Qian, Y. T. Polyol-mediated preparation of Bi2S3 nanorods. / J. Cryst. Growth 2002, / 243, 331-35. CrossRef
    11. Liao, H.-C.; Wu, M.-C.; Jao, M.-H.; Chuang, C.-M.; Chen, Y.-F.; Su, W.-F. Synthesis, optical and photovoltaic properties of bismuth sulfide nanorods. / CrystEngComm 2012, / 14, 3645-652. CrossRef
    12. Wang, D.; Hao, C.; Zheng, W.; Ma, X.; Chu, D.; Peng, Q.; Li, Y. Bi2S3 nanotubes: Facile synthesis and growth mechanism. / Nano Res. 2009, / 2, 130-34. CrossRef
    13. Tahir, A. A.; Ehsan, M. A.; Mazhar, M.; Wijayantha, K. G. U.; Zeller, M.; Hunter, A. D. Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films. / Chem. Mater. 2010, / 22, 5084-092. CrossRef
    14. Cademartiri, L.; Malakooti, R.; O’Brien, P. G.; Migliori, A.; Petrov, S.; Kherani, N. P.; Ozin, G. A. Large-scale synthesis of ultrathin Bi2S3 necklace nanowires. / Angew. Chem. Int. Ed. 2008, / 47, 3814-817. CrossRef
    15. Cademartiri, L.; Guerin, G.; Bishop, K. J. M.; Winnik, M. A.; Ozin, G. A. Polymer-like conformation and growth kinetics of Bi2S3 nanowires. / J. Am. Chem. Soc. 2012, / 134, 9327-334. CrossRef
    16. Liu, Z. P.; Peng, S.; Xie, Q.; Hu, Z. K.; Yang, Y.; Zhang, S. Y.; Qian, Y. T. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process. / Adv. Mater. 2003, / 15, 936-40. CrossRef
    17. Shao, M. W.; Zhang, W.; Wu, Z. C.; Ni, Y. B. A template-free route to Bi2S3 nanoribbons. / J. Cryst. Growth 2004, / 265, 318-21. CrossRef
    18. Song, C.; Wang, D.; Yang, T.; Hu, Z. Morphology-controlled synthesis of Bi2S3 microstructures. / CrystEngComm 2011, / 13, 3087-092. CrossRef
    19. Zhang, B.; Ye, X. C.; Hou, W. Y.; Zhao, Y.; Xie, Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. / J. Phys. Chem. B 2006, / 110, 8978-985. CrossRef
    20. Li, L.; Sun, N.; Huang, Y.; Qin, Y.; Zhao, N.; Gao, J.; Li, M.; Zhou, H.; Qi, L. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. / Adv. Funct. Mater. 2008, / 18, 1194-201. CrossRef
    21. Sigman, M. B.; Korgel, B. A. Solventless synthesis of Bi2S3 (bismuthinite) nanorods, nanowires, and nanofabric. / Chem. Mater. 2005, / 17, 1655-660. CrossRef
    22. Hu, P. F.; Cao, Y. L.; Lu, B. Flowerlike assemblies of Bi2S3 nanorods by solvothermal route and their electrochemical hydrogen storage performance. / Mater. Lett. 2013, / 106, 297-00. CrossRef
    23. Jin, R. C.; Xu, Y. B.; Li, G. H.; Liu, J. S.; Chen, G. Hierarchical chlorophytum-like Bi2S3 architectures with high electrochemical performance. / Int. J. Hydrogen Energy 2013, / 38, 9137-144. CrossRef
    24. Zhou, H.; Xiong, S.; Wei, L.; Xi, B.; Zhu, Y.; Qian, Y. Acetylacetone-directed controllable synthesis of Bi2S3 nanostructures with tunable morphology. / Cryst. Growth Des. 2009, / 9, 3862-867. CrossRef
    25. Ma, J.; Liu, Z.; Lian, J.; Duan, X.; Kim, T.; Peng, P.; Liu, X.; Chen, Q.; Yao, G.; Zheng, W. Ionic liquids-assisted synthesis and electrochemical properties of Bi2S3 nanostructures. / CrystEngComm 2011, / 13, 3072-079. CrossRef
    26. Zhang, Z.; Zhou, C. K.; Lu, H.; Jia, M.; Lai, Y. Q.; Li, J. Facile synthesis of dandelion-like Bi2S3 microspheres and their electrochemical properties for lithium-ion batteries. / Mater. Lett. 2013, / 91, 100-02. CrossRef
    27. Jung, H.; Park, C.-M.; Sohn, H.-J. Bismuth sulfide and its carbon nanocomposite for rechargeable lithium-ion batteries. / Electrochim. Acta 2011, / 56, 2135-139. CrossRef
    28. Lu, C.; Qi, L.; Yang, J.; Zhang, D.; Wu, N.; Ma, J. Simple template-free solution route for the controlled synthesis of Cu(OH)2. / J. Phys. Chem. B 2004, / 108, 17825-7831. CrossRef
    29. Ni, J. F.; Morishita, M.; Kawabe, Y.; Watada, M.; Takeichi, N.; Sakai, T. Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. / J. Power Sources 2010, / 195, 2877-882. CrossRef
    30. Li, C. Q.; Sun, N. J.; Ni, J. F.; Wang, J. Y.; Chu, H. B.; Zhou, H. H.; Li, M. X.; Li, Y. Controllable preparation and properties of composite materials based on ceria nanoparticles and carbon nanotubes. / J. Solid State Chem. 2008, / 181, 2620-625. CrossRef
    31. Liu, J.; Ni, J.; Zhao, Y.; Wang, H.; Gao, L. Grapecluster-like Fe3O4@C/CNT nanostructures with stable Li-storage capability. / J. Mater. Chem. A 2013, / 1, 12879-2884. CrossRef
    32. Koh, Y. W.; Lai, C. S.; Du, A. Y.; Tiekink, E. R. T.; Loh, K. P. Growth of bismuth sulfide nanowire using bismuth trisxanthate single source precursors. / Chem. Mater. 2003, / 15, 4544-554. CrossRef
    33. Belharouak, I.; Johnson, C.; Amine, K. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. / Electrochem. Commun. 2005, / 7, 983-88. CrossRef
    34. Ni, J.; Wang, G.; Yang, J.; Gao, D.; Chen, J.; Gao, L.; Li, Y. Carbon nanotube-wired and oxygen-deficient MoO3 nanobelts with enhanced lithium-storage capability. / J. Power Sources 2014, / 247, 90-4. CrossRef
    35. Ma, J.; Yang, J.; Jiao, L.; Wang, T.; Lian, J.; Duan, X.; Zheng, W. Bi2S3 nanomaterials: Morphology manipulation and related properties. / Dalton Trans. 2011, / 40, 10100-0108. CrossRef
    36. Wang, G. B.; Ni, J. F.; Wang, H. B.; Gao, L. J. High-performance CNT-wired MoO3 nanobelts for Li-storage application. / J. Mater. Chem. A 2013, / 1, 4112-118. CrossRef
    37. Wang, Y. G.; Li, H. Q.; He, P.; Hosono, E.; Zhou, H. S. Nano active materials for lithium-ion batteries. / Nanoscale 2010, / 2, 1294-305. CrossRef
    38. Cheng, Y. W.; Lu, S. T.; Zhang, H. B.; Varanasi, C. V.; Liu, J. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. / Nano Lett. 2012, / 12, 4206-211. CrossRef
    39. Zhao, L. W.; Ni, J. F.; Wang, H. B.; Gao, L. J. Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries. / RSC Adv. 2013, / 3, 6650-655. CrossRef
    40. Chu, H. B.; Wei, L.; Cui, R. L.; Wang, J. Y.; Li, Y. Carbon nanotubes combined with inorganic nanomaterials: Preparations and applications. / Coord. Chem. Rev. 2010, / 254, 1117-134. CrossRef
    41. Ni, J. F.; Han, Y. H.; Gao, L. J.; Lu, L. One-pot synthesis of CNT-wired LiCo0.5Mn0.5PO4 nanocomposites. / Electrochem. Commun. 2013, / 31, 84-7. CrossRef
    42. Ni, J. F.; Wang, H. B.; Gao, L. J.; Lu, L. A high-performance LiCoPO4/C core/shell composite for Li-ion batteries. / Electrochim. Acta 2012, / 70, 349-54. CrossRef
    43. Ni, J. F.; Gao, L. J.; Lu, L. Carbon coated lithium cobalt phosphate for Li-ion batteries: Comparison of three coating techniques. / J. Power Sources 2013, / 221, 35-1. CrossRef
  • 作者单位:Yang Zhao (1)
    Dongliang Gao (2)
    Jiangfeng Ni (1)
    Lijun Gao (1)
    Juan Yang (2)
    Yan Li (2)

    1. School of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
    2. Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, and State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing, 100871, China
  • ISSN:1998-0000
文摘
Layered bismuth sulfide (Bi2S3) has emerged as an important type of Li-storage material due to its high theoretical capacity and intriguing reaction mechanism. The engineering and fabrication of Bi2S3 materials with large capacity and stable cyclability via a facile approach is essential, but still remains a great challenge. Herein, we employ a one-pot hydrothermal route to fabricate carbon-coated Bi2S3 nanomeshes (Bi2S3/C) as an efficient Li-storage material. The nanomeshes serve as a highly conducting and porous scaffold facilitating electron and ion transport, while the carbon coating layer provides flexible space for efficient reduction of mechanical strain upon electrochemical cycling. Consequently, the fabricated Bi2S3/C exhibits a high and stable capacity delivery in the 0.01-.5 V region, notably outperforming previously reported Bi2S3 materials. It is able to discharge 472 mA·h·g? at 120 mA·g? over 50 full cycles, and to retain 301 mA·h·g? in the 40th cycle at 600 mA·g?, demonstrating the potential of Bi2S3 as electrode materials for rechargeable batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700