用户名: 密码: 验证码:
Influences of polyethylene glycol (PEG) on the performance of LiMn2O4 cathode material for lithium ion battery
详细信息    查看全文
  • 作者:Zhengyong Yuan ; Hao Zheng ; Shiquan Wang…
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:27
  • 期:5
  • 页码:5408-5414
  • 全文大小:1,684 KB
  • 参考文献:1.H. Xia, Z.T. Luo, J.P. Xie, Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries. Prog. Nat. Sci. Mater. Int. 22, 572–584 (2012)CrossRef
    2.F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23, 1695–1715 (2011)CrossRef
    3.M.S. Whittingham, Lithium batteries and cathode naterials. Chem. Rev. 104, 4271–4302 (2004)CrossRef
    4.H. Xia, Y.S. Meng, M.O. Lai, L. Lu, Structural and electrochemical properties of LiNi0.5Mn0.5O2 thin-film electrodes prepared by pulsed laser deposition. J. Electrochem. Soc. 157, A348–A354 (2010)CrossRef
    5.H. Xia, L. Lu, Y.S. Meng, Growth of layered LiNi0.5Mn0.5O2 thin films by pulsed laser deposition for application in micro-batteries. Appl. Phys. Lett. 92, 11912–11913 (2008)CrossRef
    6.A. Manthiram, Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2, 176–184 (2011)CrossRef
    7.S. Mandal, R.M. Rojas, J.M. Amarilla, P. Calle, N.V. Kosova, V.F. Anufrienko, J.M. Rojo, High temperature co-doped LiMn2O4-based spinels. Structural, electrical, and electrochemical characterization. Chem. Mater. 14, 1598–1605 (2002)CrossRef
    8.R.F. Liang, Z.X. Wang, H.J. Guo, X.H. Li, W.J. Peng, Z.G. Wang, Fabrication and electrochemical properties of lithium-ion batteries for power tools. J. Power Sour. 184, 598–603 (2008)CrossRef
    9.D. Zhang, B.N. Popov, R.E. White, Electrochemical investigation of CrO2.65 doped LiMn2O4 as a cathode material for lithium-ion batteries. J. Power Sour. 76, 81–90 (1998)CrossRef
    10.S.T. Yang, J.H. Jia, L. Ding, M.C. Zhang, Studies of structure and cycleability of LiMn2O4 and LiNd0.01Mn1.99O4 as cathode for Li-ion batteries. Electrochim. Acta 48, 569–573 (2003)CrossRef
    11.R. Singhal, S.R. Das, M.S. Tomar, O. Ovideo, S. Nieto, R.E. Melgarejo, R.S. Katiyar, Synthesis and characterization of Nd doped LiMn2O4 cathode for Li-ion rechargeable batteries. J. Power Sour. 164, 857–861 (2007)CrossRef
    12.A. Subramania, N. Angayarkanni, T. Vasudevan, Polyaspartic-acid-pyrolysis route for the synthesis of nanocrystalline LiCo0.15Mn1.85O4 powder for Li-ion batteries. Ionics 13, 61–65 (2007)CrossRef
    13.K. Suryakala, G.P. Kalaignan, T. Vasudevan, Synthesis and characterization of Cr-doped LiMn2−xCrxO4 (x = 0.1–0.4) cathode for Li-ion battery. Mater. Chem. Phys. 104, 479–482 (2007)CrossRef
    14.T. Kashiwagi, M. Nakayama, K. Watanabe, M. Wakihara, Y. Kobayashi, H. Miyashiro, Relationship between the electrochemical behavior and Li arrangement in LixMyMn2−yO4 (M = Co, Cr) with spinel structure. J. Phys. Chem. B 110, 4998–5004 (2006)CrossRef
    15.M.V. Reddy, A. Sakunthala, S. SelvashekaraPandian, B.V.R. Chowdari, Preparation, comparative energy storage properties, and impedance spectroscopy studies of environmentally friendly cathode, Li(MMn11/6)O4 (M = Mn1/6, Co1/6, (Co1/12Cr1/12)). J. Phys. Chem. C 117, 9056–9064 (2013)CrossRef
    16.C.Q. Feng, H. Li, C.F. Zhang, Z.P. Guo, H.M. Wu, J. Tang, Synthesis and electrochemical properties of non-stoichiometric Li–Mn-spinel (Li1.02MxMn1.95O4−yFy) for lithium ion battery application. Electrochim. Acta 61, 87–93 (2012)CrossRef
    17.Y.S. Shang, J.L. Liu, T. Huang, A.S. Yu, Effect of heat treatment on the structure and electrochemical performance of FePO4 coated spinel LiMn2O4. Electrochim. Acta 113, 248–255 (2013)CrossRef
    18.L.J. Feng, S.P. Wang, L. Han, X.Y. Qin, H.Y. Wei, Y.Z. Yang, Enhanced electrochemical properties of LiMn2O4 cathode material coated by 5 wt% of nano-La2O3. Mater. Lett. 78, 116–119 (2012)CrossRef
    19.Q.Q. Chen, Y.B. Wang, T.T. Zhang, W.M. Yin, J.W. Yang, X.Y. Wang, Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries. Electrochim. Acta 83, 65–72 (2012)CrossRef
    20.X.W. Li, R. Yang, B. Cheng, Q. Hao, H.Y. Xu, J. Yang, Y.T. Qian, Enhanced electrochemical properties of nano-Li3PO4 coated on the LiMn2O4 cathode material for lithium ion battery at 55 °C. Mater. Lett. 66, 168–171 (2012)CrossRef
    21.S. Zhao, Q.J. Chang, K. Jiang, Y. Bai, Y.Q. Yang, W.F. Zhang, Performance improvement of spinel LiMn2O4 cathode material by LaF3 surface modification. Solid State Ion. 15, 1–7 (2013)
    22.J. Yao, C. Shen, P. Zhang, C.A. Ma, D.H. Gregory, L. Wang, Spinel-Li3.5+xTi5O12 coated LiMn2O4 with high surface Mn valence for an enhanced cycling performance at high temperature. Electrochem. Commun. 31, 92–95 (2013)CrossRef
    23.Z.G. Zhang, Z.L. Gong, Y. Yang, Electrochemical performance and surface properties of bare and TiO2-coated cathode materials in lithium-ion batteries. J. Phys. Chem. B 108, 17546–17552 (2004)CrossRef
    24.J.Y. Luo, H.-M. Xiong, Y.Y. Xia, LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery. J. Phys. Chem. C 112, 12051–12057 (2008)CrossRef
    25.H.W. Lee, P. Muralidharan, R. Ruffo, C.M. Mari, Y. Cui, D.K. Kim, Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 10, 3852–3856 (2010)CrossRef
    26.Y. Yang, C. Xie, R. Ruffo, H.L. Peng, D.K. Kim, Y. Cui, Single nanorod devices for battery diagnostics: a case study on LiMn2O4. Nano Lett. 9, 4109–4114 (2009)CrossRef
    27.W. Tang, X.J. Wang, Y.Y. Hou, L.L. Li, H. Sun, Y.S. Zhu, Y. Bai, Y.P. Wu, K. Zhu, T. van Ree, Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries. J. Power Sour. 198, 308–311 (2012)CrossRef
    28.B.H. Lin, Q. Yin, H.G. Hu, F.J. Lu, H. Xia, LiMn2O4 nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries. J. Solid State Chem. 209, 23–28 (2014)CrossRef
    29.J.G. Yang, X.P. Han, X.L. Zhang, F.Y. Cheng, J. Chen, Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithium-ion battery: nano vs micro, ordered phase (P4332) vs disordered phase (Fd3m). Nano Res. 6, 679–687 (2013)CrossRef
    30.D. Kovacheva, B. Markovsky, G. Salitra, Y. Talyosef, M. Gorova, E. Levi, M. Riboch, H. Kim, D. Aurbach, Electrochemical behavior of electrodes comprising micro-sized and nano-sized particles of LiNi0.5Mn1.5O4: a comparative study. Electrochim. Acta 50, 5553–5560 (2005)CrossRef
    31.D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A. Huggins, Y. Cu, Spinel LiMnO nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948–3952 (2008)CrossRef
    32.Y.K. Sun, I.H. Oh, K.Y. Kim, Synthesis of spinel LiMn2O4 by the sol-gel method for a cathode-active material in lithium secondary batteries. Ind. Eng. Chem. Res. 36, 4839–4846 (1997)CrossRef
    33.S.E. Rock, L. Wu, D.J. Crain, S. Krishnan, D. Roy, Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4. ACS Appl. Mater. Interfaces 5, 2075–2084 (2013)CrossRef
    34.M.A. Kiani, M.F. Mousavi, M.S. Rahmanifar, Synthesis of Nano- and Micro-Particles of LiMn2O4: Electrochemical Investigation and Assessment as a Cathode in Li Battery. Int. J. Electrochem. Sci. 6, 2581–2595 (2011)
  • 作者单位:Zhengyong Yuan (1)
    Hao Zheng (2) (3)
    Shiquan Wang (2)
    Chuanqi Feng (2)

    1. Department of Chemical Engineering, Ningbo Polytechnic College, Ningbo, 315800, China
    2. Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, Hubei University, Wuhan, 430062, China
    3. Key Laboratory of Functional Materials and Chemistry for Performance and Resource of Guizhou Education Department, Anshun University, Anshun, 561000, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
  • 出版者:Springer New York
  • ISSN:1573-482X
文摘
Spinel phase LiMn2O4 is synthesized by a polyethylene glycol (PEG)-assisted co-precipitation method. The samples are characterized by X-ray diffraction and scanning electron microscopy techniques. The LiMn2O4 samples synthesized have similar morphology and uniform size of about 150–350 nm. The electrochemical measurements show that as-prepared LiMn2O4 nanoparticle sample using PEG with the molecular weight as 4000 (PEG-4000) shows the best cycling performance and highest rate capability among all samples, its initial discharge capacity is 133 mAhg−1 and maintains at 122 mAhg−1 under 0.5 °C after 50 cycles. The loss of its capacity was just 5.1 %. To control the particle size of LiMn2O4 is one of important factors for its application as a cathode material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700