用户名: 密码: 验证码:
Estimation on diffusion coefficient of lithium ions at the interface of LiNi0.5Mn1.5O4/electrolyte in Li-ion battery
详细信息    查看全文
  • 作者:H. Seyyedhosseinzadeh ; F. Mahboubi ; A. Azadmehr
  • 关键词:Li ; ion battery ; Fickian transport approach ; LiNi0.5Mn1.5O4 ; Ab initio calculation ; Diffusion coefficient
  • 刊名:Ionics
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:21
  • 期:2
  • 页码:335-344
  • 全文大小:1,596 KB
  • 参考文献:1. Zhang X (2009) Multiscale modeling of Li-ion cells: mechanics, heat generation and electrochemical kinetics, Ph.D. thesis, University of Michigan
    2. Colclasure AM, Smith KA, Kee RJ (2011) Modeling detailed chemistry and transport for solid-electrolyte-interface (SEI) films in Li–ion batteries. Electrochim Acta 58:33-3 CrossRef
    3. Latz A, Zausch J (2011) Thermodynamic consistent transport theory of Li-ion batteries. J Power Sources 196:3296-302 CrossRef
    4. Bushkova OV, Andreev OL, Batalov NN, Shkerin SN, Kuznetsov MV, Tyutyunnik AP, Koryakova OV, Song EH, Chung HJ (2006) Chemical interactions in the cathode half-cell of lithium-ion batteries: part I. Thermodynamic simulation. J Power Sources 157:477-82 CrossRef
    5. Yokokawa H, Sakai N, Yamaji K, Horita T, Ishikawa M (1998) Thermodynamic determining factors of the positive electrode potential of lithium batteries. Solid State Ionics 113-15:1- CrossRef
    6. Gupta A, Seo JH, Zhang X, Du W, Sastry AM, Shyy W (2011) Effective transport properties of LiMn2O4 electrode via particle-scale modeling. J Electrochem Soc 158:A487–A497 CrossRef
    7. Martinez-Rosas E, Vasquez-Medrano R, Flores-Tlacuahuac A (2011) Modeling and simulation of lithium-ion batteries. Comput Chem Eng 35:1937-948 CrossRef
    8. Van der Ven A, Ceder G (2005) First principles calculation of the interdiffusion coefficient in binary alloys. Phys Rev Lett 94:1-
    9. Van der Ven A, Ceder G, Asta M, Tepesch PD (2001) First-principles theory of ionic diffusion with nondilute carriers. Phys Rev B 64:1-7
    10. Koudriachova MV, Harrison NM, de Leeuw SW (2004) First principles predictions for intercalation behaviour. Solid State Ionics 175:829-34 CrossRef
    11. Van der Ven A, Ceder G (2000) Lithium diffusion in layered LiXCoO2. Electrochem Solid-State Lett 3:301-04
    12. Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in LiXMPO4 (M-?Mn, Fe, Co, Ni) olivine materials. Electrochem Solid-State Lett 7:A30–A32 CrossRef
    13. Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56:1354-365 CrossRef
    14. Breuer H-P, Petruccione F (2002) The theory of open quantum systems, 1st ed. Oxford University Press Inc., New York
    15. Mehrer H (2007) Diffusion in solids, fundamentals, methods, materials, diffusion-controlled processes. Springer, Berlin Heidelberg, New York
    16. Bokun GS, Groda YG, Uebing C, Vikhrenko VS (2001) Statistical–mechanical description of diffusion in interacting lattice gases. Phys A 296:83-05 CrossRef
    17. Han BC, Van der Ven A, Morgan D, Ceder G (2004) Electrochemical modeling of intercalation processes with phase field models. Electrochim Acta 49:4691-699 CrossRef
    18. Singh GK, Ceder G, Bazant MZ (2008) Intercalation dynamics in rechargeable battery materials: general theory and phase-transformation waves in LiFePO4. Electrochim Acta 53:7599-613 CrossRef
    19. Aoki K (2006) Diffusion-controlled current with memory. J Electroanal Chem 592:31-6 CrossRef
    20. Seyyedhosseinzadeh H, Mahboubi F, Azadmehr A (2
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
This research tried to estimate diffusion coefficient for lithium ions through the surface of the spinel LiNi0.5Mn1.5O4 by spin-polarized total energy calculation. In addition, calculated result by this ab initio model was compared with a semi-empirical model. Both of these models predicted diffusion coefficient for lithium ions at the interface of the spinel LiNi0.5Mn1.5O4/electrolyte as 10??cm2?s? which is 3 orders of magnitude higher than the diffusion coefficient of lithium ions in LiNi0.5Mn1.5O4. Details of these two models have been explained in this paper along with calculated results for surface diffusion coefficient of LiNi0.5Mn1.5O4 cathode material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700