用户名: 密码: 验证码:
Quantitative stability of linear infinite inequality systems under block perturbations with applications to convex systems
详细信息    查看全文
  • 作者:M. J. Cánovas (1)
    M. A. López (2)
    B. S. Mordukhovich (3)
    J. Parra (1)
  • 关键词:Semi ; infinite and infinite programming ; Parametric optimization ; Variational analysis ; Convex infinite inequality systems ; Quantitative stability ; Lipschitzian bounds ; Generalized differentiation ; Coderivatives ; Block perturbations ; 90C34 ; 90C25 ; 49J52 ; 49J53 ; 65F22
  • 刊名:TOP
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:20
  • 期:2
  • 页码:310-327
  • 全文大小:641KB
  • 参考文献:1. Cánovas MJ, Dontchev AL, López MA, Parra J (2005a) Metric regularity of semi-infinite constraint systems. Math Program 104:329-46 CrossRef
    2. Cánovas MJ, López MA, Parra J, Toledo FJ (2005b) Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems. Math Program 103:95-26 CrossRef
    3. Cánovas MJ, Gómez-Senent FJ, Parra J (2008) Regularity modulus of arbitrarily perturbed linear inequality systems. J Math Anal Appl 343:315-27 CrossRef
    4. Cánovas MJ, López MA, Mordukhovich BS, Parra J (2009) Variational analysis in semi-infinite and infinite programming, I: Stability of linear inequality systems of feasible solutions. SIAM J Optim 20:1504-526 CrossRef
    5. Cánovas MJ, López MA, Mordukhovich BS, Parra J (2010a) Variational analysis in semi-infinite and infinite programming, II: Necessary optimality conditions. SIAM J Optim 20:2788-806 CrossRef
    6. Cánovas MJ, López MA, Mordukhovich BS, Parra J (2010b) Quantitative stability and optimality conditions in convex semi-infinite and infinite programming, Research Report 14, Department of Mathematics, Wayne State University, Detroit, MI
    7. Cánovas MJ, López MA, Parra J, Toledo FJ (2011) Distance to ill-posedness for linear inequality systems under block perturbations. Convex and infinite dimensional cases. Optimization 60(7). doi:10.1080/02331934.2011.606624
    8. Deville R, Godefroy G, Zizler V (1993) Smoothness and renormings in Banach spaces. Longman, Harlow
    9. Dinh N, Goberna MA, López MA (2006) From linear to convex systems: Consistency, Farkas-lemma and applications. J Convex Anal 13:279-90
    10. Dinh N, Goberna MA, López MA (2010) On the stability of the feasible set in optimization problems. SIAM J Optim 20:2254-280 CrossRef
    11. Dunford N, Schwartz JT (1988) Linear operators Part?I: General theory. Wiley, New York
    12. Goberna MA, López MA (1998) Linear semi-infinite optimization. Wiley, Chichester
    13. Goberna MA, A López M, Todorov MI (1996) Stability theory for linear inequality systems. SIAM J Matrix Anal Appl 17:730-43 CrossRef
    14. Ioffe AD (2000) Metric regularity and subdifferential calculus. Russ Math Surv 55:501-58 CrossRef
    15. Ioffe AD (2010) On stability of solutions to systems of convex inequalities. Centre de Recerca Matemàtica, Preprint #984, November
    16. Ioffe AD, Sekiguchi Y (2009) Regularity estimates for convex multifunctions. Math Program 117:255-70 CrossRef
    17. Mordukhovich BS (1976) Maximum principle in problems of time optimal control with nonsmooth constraints. J Appl Math Mech 40:960-69 CrossRef
    18. Mordukhovich BS (1993) Complete characterizations of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans Am Math Soc 340:1-5 CrossRef
    19. Mordukhovich BS (2006) Variational analysis and generalized differentiation,?I: Basic theory,?II: Applications. Springer, Berlin
    20. Phelps RR (1989) Convex functions, monotone operators and differentiability. Springer, Heidelberg CrossRef
    21. Rockafellar RT, Wets RJ-B (1998) Variational analysis. Springer, Berlin CrossRef
    22. Schirotzek W (2007) Nonsmooth analysis. Springer, Berlin CrossRef
  • 作者单位:M. J. Cánovas (1)
    M. A. López (2)
    B. S. Mordukhovich (3)
    J. Parra (1)

    1. Center of Operations Research, Miguel Hernández University of Elche, 03202, Elche (Alicante), Spain
    2. Department of Statistics and Operations Research, University of Alicante, 03080, Alicante, Spain
    3. Department of Mathematics, Wayne State University, Detroit, MI, 48202, USA
  • ISSN:1863-8279
文摘
The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set J. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is l ?/sub>(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel–Legendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn on constant-by-blocks perturbations in the linearized system. Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map of block-perturbed linear systems, which involves only the system’s data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. In this way we extend to the convex setting the results of Cánovas et?al. (SIAM J. Optim. 20, 1504-526, 2009) developed for arbitrary perturbations with no block structure in the linear framework under the boundedness assumption on the system’s coefficients. The latter boundedness assumption is removed in this paper when the decision space is reflexive. The last section provides the aimed application to the convex case.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700