用户名: 密码: 验证码:
Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method
详细信息    查看全文
  • 作者:Jian Gao (1)
    Geng Chu (1)
    Meng He (2)
    Shu Zhang (1)
    RuiJuan Xiao (1)
    Hong Li (1)
    LiQuan Chen (1)
  • 关键词:solid electrolyte ; conduction pathway ; Bond Valence method ; material screening ; lithium ; ion battery ; /li> ; /li> /li> /li>
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:57
  • 期:8
  • 页码:1526-1536
  • 全文大小:1,929 KB
  • 参考文献:1. Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359-67 CrossRef
    2. Karden E, Ploumen S, Fricke B, et al. Energy storage devices for future hybrid electric vehicles. J Power Sources, 2007, 168(1): 2-1 CrossRef
    3. Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices. Science, 2011, 334(6058): 928-35 CrossRef
    4. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004, 104(10): 4303-417 CrossRef
    5. Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem Soc Rev, 2011, 40(5): 2525-540 CrossRef
    6. Hautier G, Fischer C C, Jain A, et al. Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chem Mater, 2010, 22(12): 3762-767 CrossRef
    7. Hautier G, Fischer C, Ehrlacher V, et al. Data mined ionic substitutions for the discovery of new compounds. Inorg Chem, 2011, 50(2): 656-63 CrossRef
    8. Heitjans P, Indris S. Diffusion and ionic conduction in nanocrystalline ceramics. J Phy-Condens Mat, 2003, 15(30): R1257 CrossRef
    9. Yashima M, Itoh M, Inaguma Y, et al. Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3. J Am Chem Soc, 2005, 127(10): 3491-495 CrossRef
    10. Han J T, Zhu J L, Li Y T, et al. Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12. Chem Commun, 2012, 48(79): 9840-842 CrossRef
    11. Geiger C A, Alekseev E, Lazic B, et al. Crystal chemistry and stability of “Li7La3Zr2O12-garnet: A fast lithium-ion conductor. Inorg Chem, 2011, 50(3): 1089-097 CrossRef
    12. Li W, Wu G T, Araujo C M, et al. Li+ ion conductivity and diffusion mechanism in alpha-Li3N and beta-Li3N. Energ Environ Sci, 2010, 3(10): 1524-530 CrossRef
    13. Adams S, Rao R P. Ion transport and phase transition in Li7em class="a-plus-plus">x La3 (Zr2em class="a-plus-plus">x Mx)O12 (M = Ta5+, Nb5+, / x=0, 0.25). J Mater Chem, 2012, 22(4): 1426-434 CrossRef
    14. Adams S, Rao R P. Structural requirements for fast lithium ion migration in Li10GeP2S12. J Mater Chem, 2012, 22(16): 7687-691 CrossRef
    15. Adams S, Swenson J. Pathway models for fast ion conductors by combination of bond valence and reverse Monte Carlo methods. Solid State Ionics, 2002, 154: 151-59 CrossRef
    16. Adams S. Bond valence analysis of structure-property relationships in solid electrolytes. J Power Sources, 2006, 159(1): 200-04 CrossRef
    17. Thangadurai V, Adams S, Weppner W. Crystal structure revision and identification of Li+-ion migration pathways in the garnet-like Li5La3M2O12 (M = Nb, Ta) oxides. Chem Mater, 2004, 16(16): 2998-006 CrossRef
    18. Brown I D. Recent developments in the methods and applications of the bond valence model. Chem Rev, 2009, 109(12): 6858-919 CrossRef
    19. Gonzalez-Platas J, Gonzalez-Silgo C, Ruiz-Perez C. VALMAP2.0: Contour maps using the Bond-Valence-Sum method. J Appl Crystallogr, 1999, 32: 341-44 CrossRef
    20. Adams S, Swenson J. Determining ionic conductivity from structural models of fast ionic conductors. Phys Rev Lett, 2000, 84(18): 4144-147 CrossRef
    21. Adams S. Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Crystallogr B, 2001, 57: 278-87 CrossRef
    22. PDF4+, Powder diffraction file, international centre for diffraction data. Newtown Square, PA. 2004
    23. Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater, 2011, 10(9): 682-86 CrossRef
    24. Alpen U V, Rabenau A, Talat G H. Ionic-conductivity in Li3N single-crystals. Appl Phys Lett, 1977, 30(12): 621-23 CrossRef
    25. Knauth P. Inorganic solid Li ion conductors: An overview. Solid State Ionics, 2009, 180(14-6): 911-16 CrossRef
    26. Inorganic Crystal Structure Database, ICSD. Karlsruhe: Fachinformationszentrum, 2008
    27. Brown I D. Accumulated table of bond valence sum parameters (bvparm2006.cif) (downloaded from http://www.ccp14.ac.uk/ccp/web-mirrors/idbrown/bondvalenceparam/)
    28. Brown I D. VALENCE: A program for calculating bond valences. J Appl Crystallogr, 1996, 29: 479-80 CrossRef
    29. Brown I D, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal-structure database. Acta Crystallogr B, 1985, 41: 244-47 CrossRef
    30. Brese N E, Okeeffe M. Bond-valence parameters for solids. Acta Crystallogr B, 1991, 47: 192-97 CrossRef
    31. Brown I D. Using chemical-bonds to analyze data retrieved from the inorganic crystal-structure database. J Chem Inf Comput Sci, 1989, 29(4): 266-71 CrossRef
    32. Inaguma Y, Chen L Q, Itoh M, et al. High ionic-conductivity in lithium lanthanum titanate. Solid State Commun, 1993, 86(10): 689-93 CrossRef
    33. Hong H Y P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mat Res Bul, 1978, 13(2): 117-24 CrossRef
    34. Alpen U V, Bell M F, Wichelhaus W. Ionic conductivity of Li14Zn(GeO4)4 (LISICON). Electrochim Acta, 1978, 23(12): 1395-397 CrossRef
    35. Bruce P G, West A R. The AC conductivity of polycrystalline lisicon, Li2+2 / x Zn1em class="a-plus-plus">x GeO4, and a model for intergranular constriction resistances. J Electrochem Soc, 1983, 130(3): 662-69 CrossRef
    36. Aono H, Sugimoto E, Sadaoka Y, et al. Ionic-conductivity of the lithium titanium phosphate (Li1+ / x AlxTi2em class="a-plus-plus">x (PO4)3), (Li1+ / x ScxTi2x (PO4)3), (Li1+ / x YxTi2em class="a-plus-plus">x (PO4)3), (Li1+ / x LaxTi2em class="a-plus-plus">x (PO4)3 systems. J Electrochem Soc, 1989, 136(2): 590-91 CrossRef
    37. Thangadurai V, Kaack H, Weppner W J F. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J Am Ceram Soc, 2003, 86(3): 437-40 CrossRef
    38. Emery J, Buzare J Y, Bohnke O, et al. Lithium-7 NMR and ionic conductivity studies of lanthanum lithium litanate electrolytes. Solid State Ionics, 1997, 99(1-): 41-1 CrossRef
    39. Bohnke O, Emery J, Fourquet J L. Anomalies in Li+ ion dynamics observed by impedance spectroscopy and Li-7 NMR in the perovskite fast ion conductor (Li3 / x La2/3em class="a-plus-plus">x sub class="a-plus-plus">(1/3 / x))TiO3. Solid State Ionics, 2003, 158(1-): 119-32 CrossRef
    40. Abrahams I, Bruce P G. The mechanism of lithium ion mobility in solid electrolytes. Philos Mag A, 1991, 64(5): 1113-118 CrossRef
    41. Ilyushin G D, Blatov V A, Dem’yanets L N, et al. Mechanism of structural phase transitions in the Li4GeO4-ZnGeO4 system: Computer modeling and identification of invariant nanocluster structures in Li4GeO4, LISICON Li6Zn(GeO4)2, and Li4Zn2(GeO4)2 ( g Phase). Russ J Inorg Chem, 2012, 57(6): 846-53 CrossRef
    42. Fujimura K, Kuwabara A, Moriwake H, et al. Analysis of lithium-ion conduction in LISICON-based solid electrolytes by first-principles molecular dynamics simulation. In: Proceedings of 223rd ECS Meeting. Toronto: The Electrochemical Society, 2012
    43. Thangadurai V, Weppner W. Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics, 2006, 12(1): 81-2 CrossRef
    44. Cabana J, Ling C D, Oro-Sole J, et al. Antifluorite-type lithium chromium oxide nitrides: Synthesis, structure, order, and electrochemical properties. Inorg Chem, 2004, 43(22): 7050-060 CrossRef
    45. Robertson A D, West A R, Ritchie A G. Review of crystalline lithium-ion conductors suitable for high temperature battery applications. Solid State Ionics, 1997, 104(1-): 1-1 CrossRef
    46. Kanno R, Maruyama M. Lithium ionic conductor thio-LISICON—The Li2S-GeS2-P2S5 system. J Electrochem Soc, 2001, 148(7): A742–A746 CrossRef
    47. Wang B, Chakoumakos B C, Sales B C, et al. Synthesis, crystal-structure, and ionic-conductivity of a polycrystalline lithium phosphorus oxynitride with the gamma-Li3PO4 structure. J Solid State Chem, 1995, 115(2): 313-23 CrossRef
    48. Bates J B, Dudney N J, Gruzalski G R, et al. Electrical-properties of amorphous lithium electrolyte thin-films. Solid State Ionics, 1992, 53: 647-54 CrossRef
    49. Hamon Y, Douard A, Sabary F, et al. Influence of sputtering conditions on ionic conductivity of LiPON thin films. Solid State Ionics, 2006, 177(3-): 257-61 CrossRef
    50. Inaguma Y, Seo A, Katsumata T. Synthesis and lithium ion conductivity of cubic deficient perovskites Sr0.5+ / x Li0.5 / x sub class="a-plus-plus">xTi0.5Ta0.5O3 and the La-doped compounds. Solid State Ionics, 2004, 174(1-): 19-6 CrossRef
    51. Inaguma Y, Chen L Q, Itoh M, et al. Candidate compounds with perovskite structure for high lithium ionic-conductivity. Solid State Ionics, 1994, 70: 196-02 CrossRef
    52. Cao H, Xia B J, Zhang Y, et al. LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics, 2005, 176(9-0): 911-14 CrossRef
    53. Kim H S, Kim Y, Kim S I, et al. Enhanced electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material by coating with LiAlO2 nanoparticles. J Power Sources, 2006, 161(1): 623-27 CrossRef
    54. Cheng F, Xin Y, Huang Y, et al. Enhanced electrochemical performances of 5 V spinel LiMn1.58Ni0.42O4 cathode materials by coating with LiAlO2. J Power Sources, 2013, 239(0): 181-88 CrossRef
    55. Wen Z Y, Gu Z H, Xu X H, et al. Research on the preparation, electrical and mechanical properties of gamma-LiAlO2 ceramics. J Nucl Mater, 2004, 329: 1283-286 CrossRef
    56. Shimura T, Murahashi D, Iwahara H, et al. Lithium ionic conduction in LiAlO2-based oxides at elevated temperatures. In: Proceedings of Solid State Ionics: Trends in the New Millennium. Aichi: World Scientific Publishing Co. Pte. Ltd., 2002. 613-20
    57. Indris S, Heitjans P, Uecker R, et al. Li ion dynamics in a LiAlO2 single crystal studied by Li-7 NMR spectroscopy and conductivity measurements. J Phys Chem C, 2012, 116(27): 14243-4247 CrossRef
    58. Iddir H, Curtiss L A. Li ion diffusion mechanisms in bulk monoclinic Li2CO3 crystals from density functional studies. J Phys Chem C, 2010, 114(48): 20903-0906 CrossRef
    59. Shi S Q, Lu P, Liu Z Y, et al. Direct calculation of Li-Ion transport in the solid electrolyte interphase. J Am Chem Soc, 2012, 134(37): 15476-5487 CrossRef
    60. Shi S Q, Qi Y, Li H, et al. Defect thermodynamics and diffusion mechanisms in Li2CO3 and implications for the solid electrolyte interphase in Li-ion batteries. J Phys Chem C, 2013, 117(17): 8579-593 CrossRef
    61. Adams S. Modelling ion conduction pathways by bond valence pseudopotential maps. Solid State Ionics, 2000, 136-37: 1351-361 CrossRef
    62. Adams S, Rao R P. High power lithium ion battery materials by computational design. Phys Status Solidi A, 2011, 208(8): 1746-753 CrossRef
    63. Adams S, Rao R P. Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes. Phys Chem Chem Phys, 2009, 11(17): 3210-216 CrossRef
    64. Tho T D, Rao R P, Adams S. Structure property correlation in lithium borophosphate glasses. Eur Phys J E, 2012, 35(1): 1-1 CrossRef
    65. Adams S, Maier J. Ag migration pathways in crystalline and glassy solid electrolytes AgI-AgMxOy. Solid State Ionics, 1998, 105(1-): 67-4 CrossRef
    66. Hall A, Adams S, Swenson J. Local dimensionality and intermediate range ordering of ion conduction pathways in borate glasses. J Non-Cryst Solids, 2006, 352(42-9): 5164-169 CrossRef
    67. Hall A, Adams S, Swenson J. Comparative study of ion conducting pathways in borate glasses. Phys Rev B, 2006, 74(17): 174205 CrossRef
    68. Rao R P, Tho T D, Adams S. Lithium ion transport pathways in / xLiCl-(1- / x)(0.6Li2O-0.4P2O5) glasses. J Power Sources, 2009, 189(1): 385-90 CrossRef
    69. Hall A, Swenson J, Adams S, et al. Mixed mobile ion effect and cooperative motions in silver-sodium phosphate glasses. Phys Rev Lett, 2008, 101: 195901 CrossRef
  • 作者单位:Jian Gao (1)
    Geng Chu (1)
    Meng He (2)
    Shu Zhang (1)
    RuiJuan Xiao (1)
    Hong Li (1)
    LiQuan Chen (1)

    1. Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
    2. National Center for Nanoscience and Technology, Beijing, 100190, China
  • ISSN:1869-1927
文摘
Inorganic solid electrolytes have distinguished advantages in terms of safety and stability, and are promising to substitute for conventional organic liquid electrolytes. However, low ionic conductivity of typical candidates is the key problem. As connective diffusion path is the prerequisite for high performance, we screen for possible solid electrolytes from the 2004 International Centre for Diffraction Data (ICDD) database by calculating conduction pathways using Bond Valence (BV) method. There are 109846 inorganic crystals in the 2004 ICDD database, and 5295 of them contain lithium. Except for those with toxic, radioactive, rare, or variable valence elements, 1380 materials are candidates for solid electrolytes. The rationality of the BV method is approved by comparing the existing solid electrolytes-conduction pathways we had calculated with those from experiments or first principle calculations. The implication for doping and substitution, two important ways to improve the conductivity, is also discussed. Among them Li2CO3 is selected for a detailed comparison, and the pathway is reproduced well with that based on the density functional studies. To reveal the correlation between connectivity of pathways and conductivity, α/γ-LiAlO2 and Li2CO3 are investigated by the impedance spectrum as an example, and many experimental and theoretical studies are in process to indicate the relationship between property and structure. The BV method can calculate one material within a few minutes, providing an efficient way to lock onto targets from abundant data, and to investigate the structure-property relationship systematically.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700