用户名: 密码: 验证码:
Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: intracellular DNA binding and cell cycle arrest
详细信息    查看全文
  • 作者:Lirong Li ; Jin Sun ; Shufang Xia ; Xu Tian…
  • 关键词:Candida albican ; Antifungal ; Antimicrobial peptide ; DNA binding ; Cell cycle
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:100
  • 期:7
  • 页码:3245-3253
  • 全文大小:1,246 KB
  • 参考文献:Alonso-Monge R, Carvaihlo S, Nombela C, Rial E, Pla J (2009) The Hog1 MAP kinase controls respiratory metabolism in the fungal pathogen Candida albicans. Microbiology 155:413–423CrossRef PubMed
    Burrows LL, Stark M, Chan C, Glukhov E, Sinnadurai S, Deber CM (2006) Activity of novel non-amphipathic cationic antimicrobial peptides against Candida species. J Antimicrob Chemother 57:899–907CrossRef PubMed
    Chan YR, Gallo RL (1998) PR-39, a syndecan-inducing antimicrobial peptide, binds and affects p130(Cas). J Biol Chem 273:28978–28985CrossRef PubMed
    Cudic M, Otvos L (2002) Intracellular targets of antibacterial peptides. Curr Drug Targets 3:101–106CrossRef PubMed
    da Silva AP, Unks D, Lyu SC, Ma J, Zbozien-Pacamaj R, Chen X, Krensky AM, Clayberger C (2008) In vitro and in vivo antimicrobial activity of granulysin-derived peptides against Vibrio cholera. J Antimicrob Chemother 61:1103–1109CrossRef PubMed PubMedCentral
    Garibotto FM, Garro AD, Masman MF, Rodríguez AM, Luiten PG, Raimondi M, Zacchino SA, Somlai C, Penke B, Enriz RD (2010) New small-size peptides possessing antifungal activity. Bioorg Med Chem 18:158–167CrossRef PubMed
    Hilchie AL, Wuerth K, Hancock RE (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9:761–768CrossRef PubMed
    Hou F, Li J, Pan P, Xu J, Liu L, Liu W, Song B, Li N, Wan J, Gao H (2011) Isolation and characterisation of a new antimicrobial peptide from the skin of Xenopus laevis. Int J Antimicrob Agents 38:510–515CrossRef PubMed
    Imura Y, Nishida M, Matsuzaki K (2007) Action mechanism of PEGylated magainin 2 analogue peptide. Biochim Biophys Acta 1768:2578–2585CrossRef PubMed
    Jang WS, Kim HK, Lee YK, Kim SA, Han YS, Lee IH (2006) Antifungal activity of synthetic peptide derived from halocidin, antimicrobial peptide from the tunicate, Halocynthia aurantium. FEBS Lett 580:1490–1496CrossRef PubMed
    Jung HJ, Park Y, Sung WS, Suh BK, Lee J, Hahm KS, Lee DG (2007) Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim Biophys Acta 1768:1400–1405CrossRef PubMed
    Koczulla R, von Degenfeld G, Kupatt C, Krōtz F, Zahler S, Gloe T, Issbrücker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111:1665–1672CrossRef PubMed PubMedCentral
    Lee DG, Park Y, Kim HN, Kim HK, Kim PI, Choi OH, Hahm K (2002a) Antifungal mechanism of an antimicrobial peptide, HP(2–20), derived from N-terminus of Helicobacter pylori ribosomal protein L1 against Candida albicans. Biochem Biophys Res Commun 291:1006–1013CrossRef PubMed
    Lee DG, Park Y, Kim PI, Jeong HG, Woo ER, Hahm KS (2002b) Influence on the plasma membrane of Candida albicans by HP (2–9)-magainin 2 (1–12) hybrid peptide. Biochem Biophys Res Commun 297:885–889CrossRef PubMed
    Lee HS, Park CB, Kim JM, Jang SA, Park IY, Kim MS, Cho JH, Kim SC (2008) Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Lett 271:47–55CrossRef PubMed
    Liao RS, Rennie RP, Talbot JA (1999) Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob Agents Chemother 43:1034–1041PubMed PubMedCentral
    Li L, Shi Y, Cheserek MJ, Su G, Le G (2013) Antibacterial activity and dual mechanisms of peptide analog derived from cell-penetrating peptide against Salmonella typhimurium and Streptococcus pyogenes. Appl Microbiol Biotechnol 97:1711–1723CrossRef PubMed
    Lupetti A, van Dissel JT, Brouwer CP, Nibbering PH (2008) Human antimicrobial peptides’ antifungal activity against Aspergillus fumigatus. Eur J Clin Microbiol Infect Dis 27:1125–1129CrossRef PubMed
    Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci U S A 103:15997–16002CrossRef PubMed PubMedCentral
    McDonnell MJ, Rivas L, Burgess CM, Fanning S, Duffy G (2012) Inhibition of verocytotoxigenic Escherichia coli by antimicrobial peptides caseicin A and B and the factors affecting their antimicrobial activities. Int J Food Microbiol 153:260–268CrossRef PubMed
    Mochon AB, Liu H (2008) The antimicrobial peptide Histatin-5 causes a spatially restricted disruption on the Candida albicans surface, allowing rapid entry of the peptide into the cytoplasm. PLoS Pathog 4, e1000190CrossRef PubMed PubMedCentral
    Nuding S, Fellermann K, Wehkamp J, Mueller HA, Stange EF (2006) A flow cytometric assay to monitor antimicrobial activity of defensins and cationic tissue extracts. J Microbiol Methods 65:335–345CrossRef PubMed
    Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC (2000) Structure—activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci U S A 97:8245–8250CrossRef PubMed PubMedCentral
    Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides a reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590CrossRef PubMed
    Sung WS, Park SH, Lee DG (2008) Antimicrobial effect and membrane-active mechanism of Urechistachykinins, neuropeptides derived from Urechis unicinctus. FEBS Lett 582:2463–2466CrossRef PubMed
    Tang Y, Shi Y, Zhao W, Hao G, Le G (2008) Insertion mode of a novel anionic antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly, its effect on surface potential of bacterial membrane. J Pharm Biomed Anal 48:1187–1194CrossRef PubMed
    Tanida T, Okamoto T, Ueta E, Yamamoto T, Osaki T (2006) Antimicrobial peptides enhance the candidacidal activity of antifungal drugs by promoting the efflux of ATP from Candida cells. J Antimicrob Chemother 57:94–103CrossRef PubMed
    Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51:149–177CrossRef PubMed
    VanCompernolle SE, Taylor RJ, Oswald-Richter K, Jiang J, Youree BE, Bowie JH, Tyler MJ, Conlon JM, Wade D, Aiken C, Dermody TS, KewalRamani VN, Rollins-Smith LA, Unutmaz D (2005) Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J Virol 79:11598–11606CrossRef PubMed PubMedCentral
    Zore GB, Thakre AD, Jadhav S, Karuppayil SM (2011) Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 18:1181–1190CrossRef PubMed
  • 作者单位:Lirong Li (1) (2)
    Jin Sun (1)
    Shufang Xia (1)
    Xu Tian (1)
    Maureen Jepkorir Cheserek (3)
    Guowei Le (1)

    1. Institute of Food Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
    2. Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, Yunnan Province, China
    3. Human Nutrition Department, Egerton University, PO BOX 536, Egerton, Kenya
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
We investigated the antifungal properties and anti-candidal mechanism of antimicrobial peptide APP. The minimum inhibitory concentration of APP was 8 μM against Candida albicans and Aspeogillus flavus, the concentration against Saccharomyces cerevisiae and Cryptococcus neoformans was 16 μM, while 32 μM inhibited Aspergilla niger and Trichopyton rubrum. APP caused slight depolarization (12.32 ± 0.87 %) of the membrane potential of intact C. albicans cells when it exerted its anti-candidal activity and only caused 21.52 ± 0.48 % C. albicans cell membrane damage. APP interacted with cell wall membrane, caused potassium efflux and nucleotide leakage. However, confocal fluorescence microscopy experiment and flow cytometry confirmed that FITC-labeled APP penetrated C. albicans cell membrane with 52.31 ± 1.88 % cell-penetrating efficiency and accumulated in the cytoplasm. Then, APP interact with C. albicans genomic DNA and completely suppressed DNA migration above weight ratio (peptide/DNA) of 2, and significantly arrested cell cycles during the S-phase (S-phase cell population was 27.09 ± 0.73 %, p < 0.05) after penetrating the cell membrane. Results indicated that APP kills C. albicans for efficient cell-penetrating efficiency, strong DNA-binding affinity and significant physiological changes inducing S-phase arrest in intracellular environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700