用户名: 密码: 验证码:
A ternary sulphonium composite Cu3BiS3/S as cathode materials for lithium–sulfur batteries
详细信息    查看全文
  • 作者:Xiang Gao ; Yan Wang ; Zengsheng Ma ; Wenjuan Jiang…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:51
  • 期:11
  • 页码:5139-5145
  • 全文大小:2,413 KB
  • 参考文献:1.Suo L, Hu YS, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481–1490CrossRef
    2.Wang Z, Dong Y, Li H, Zhao Z, Wu HB, Hao C, Liu S, Qiu J, Lou XWD (2014) Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun 5:5002–5009CrossRef
    3.Chung SH, Manthiram A (2013) Lithium–sulfur batteries with superior cycle stability by employing porous current collectors. Electrochim Acta 107:569–576CrossRef
    4.Huang C, Xiao J, Shao Y, Zheng J, Bennett WD, Lu D, Saraf LV, Engelhard M, Ji L, Zhang J (2014) Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures. Nat Commun 5:3015–3021
    5.Xi K, Chen B, Li H, Xie R, Gao C, Zhang C, Kumar RV, Robertson J (2015) Soluble polysulphide sorption using carbon nanotube forest for enhancing cycle performance in a lithium-sulphur battery. Nano Energy 12:538–546CrossRef
    6.Yang J, Wang S, Ma Z, Du Z, Li C, Song J, Wang G, Shao G (2015) Novel nitrogen-doped hierarchically porous coralloid carbon materials as host matrixes for lithium–sulfur batteries. Electrochim Acta 159:8–15CrossRef
    7.Zhang W, Qiao D, Pan J, Cao Y, Yang H, Ai X (2013) A Li+-conductive microporous carbon-sulfur composite for Li–S batteries. Electrochim Acta 87:497–502CrossRef
    8.Zhang J, Ma Z, Cheng J, Wang Y, Wu C, Pan Y, Lu C (2015) Sulfur@metal cotton with superior cycling stability as cathode materials for rechargeable lithium–sulfur batteries. J Electroanal Chem 738:184–187CrossRef
    9.Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8(6):500–506CrossRef
    10.Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462–4467CrossRef
    11.Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y (2011) Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5(11):9187–9193CrossRef
    12.Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ (2012) Smaller sulfur molecules promise better lithium–sulfur batteries. J Am Chem Soc 134(45):18510–18513CrossRef
    13.Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647CrossRef
    14.Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11(10):4288–4294CrossRef
    15.Chen H, Wang C, Hu C, Zhang J, Gao S, Lu W, Chen L (2015) Vulcanization accelerator enabled sulfurized carbon materials for high capacity and high stability of lithium–sulfur batteries. J Mater Chem A 3(4):1392–1395CrossRef
    16.Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF (2015) A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat Commun 6:5682–5689CrossRef
    17.Sun M, Zhang S, Jiang T, Zhang L, Yu J (2008) Nano-wire networks of sulfur-polypyrrole composite cathode materials for rechargeable lithium batteries. Electrochem Commun 10(12):1819–1822CrossRef
    18.Yuan L, Yuan H, Qiu X, Chen L, Zhu W (2009) Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries. J Power Sources 189(2):1141–1146CrossRef
    19.Dörfler S, Hagen M, Althues H, Tübke J, Kaskel S, Hoffmann MJ (2012) High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries. Chem Commun 48(34):4097–4099CrossRef
    20.Kharisov BI (2008) A review for synthesis of nanoflowers. Recent Pat Nanotech 2(3):190–200CrossRef
    21.Zeng Y, Li H, Qu B, Xiang B, Wang L, Zhang Q, Li Q, Wang T, Wang Y (2012) Facile synthesis of flower-like Cu3BiS3 hierarchical nanostructures and their electrochemical properties for lithium-ion batteries. CrystEngComm 14(2):550–554CrossRef
    22.Li H, Zhang Q, Pan A, Wang Y, Zou B, Fan HJ (2011) Single-crystalline Cu4Bi4S9 nanoribbons: facile synthesis, growth mechanism, and surface photovoltaic properties. Chem Mater 23(5):1299–1305CrossRef
    23.Gerein NJ, Haber JA (2006) One-step synthesis and optical and electrical properties of thin film Cu3BiS3 for use as a solar absorber in photovoltaic devices. Chem Mater 18(26):6297–6302CrossRef
    24.Chen D, Shen G, Tang K, Liu X, Qian Y, Zhou G (2003) The synthesis of Cu3BiS3 nanorods via a simple ethanol-thermal route. J Cryst Growth 253(1):512–516CrossRef
  • 作者单位:Xiang Gao (1)
    Yan Wang (2) (3)
    Zengsheng Ma (1)
    Wenjuan Jiang (1)
    Youlan Zou (1)
    Chunsheng Lu (3)

    1. National–Provincial Laboratory of Special Function Thin Film Materials, and School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
    2. School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan, 411201, China
    3. Department of Mechanical Engineering, Curtin University, Perth, WA, 6845, Australia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
In this paper, we synthesized a new cathode material (Cu3BiS3) by a solvothermal method for high-performance lithium–sulfur batteries. Cu3BiS3 with a unique flower structure was characterized using the X-ray diffraction, energy-dispersive X-ray spectrometer, and scanning electron microscopy. It is shown that the Cu3BiS3/S flower exhibits a high initial capacity of 1343 mAh g−1 at 0.2 C, and although a capacity fade in subsequent cycles occurs due to polysulfide dissolution and shuttle mechanism, 487 mAh g−1 at 0.2 C can be retained after 100 cycles with the 90–95 % coulombic efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700