用户名: 密码: 验证码:
Improvement of snow depth retrieval for FY3B-MWRI in China
详细信息    查看全文
  • 作者:LingMei Jiang (1)
    Pei Wang (1)
    LiXin Zhang (1)
    Hu Yang (2)
    JunTao Yang (1)
  • 关键词:snow depth ; passive microwave ; FY3B ; MWRI ; China
  • 刊名:Science China Earth Sciences
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:57
  • 期:6
  • 页码:1278-1292
  • 全文大小:
  • 参考文献:1. Cao M S, Li P J, Robinson D A, et al. 1993. Evaluation and primary application of microwave remote sensing SMMR derived snow cover in Western China. J Rem Sens, 8: 260-69
    2. Chang A T C, Foster J L, Hall D K. 1987. Nimbus-7 SMMR derived global snow cover parameters. Ann Glaciol, 9: 39-4
    3. Chang A T C, Gloersen P, Schmugge T J, et al. 1976. Microwave emission from snow and glacier ice. J Glaciol, 16: 23-9
    4. Chang S, Shi J C, Jiang L M, et al. 2009. Improved snow depth retrieval algorithm in China area using passive microwave remote sensing data. In: Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium. II: 614-17
    5. Che T, Li X, Jin R, et al. 2008. Snow depth derived from passive microwave remote-sensing data in China. Ann Glaciol, 49: 145-54 CrossRef
    6. Derksen C, Toose P, Rees A, et al. 2010. Development of a tundra-specific snow water equivalent retrieval algorithm for satellite passive microwave data. Remote Sens Environ, 114: 1699-709 CrossRef
    7. Derksen C, Walker A, Goodison B. 2005. Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra of western Canada. Remote Sens Environ, 96: 315-27 CrossRef
    8. Derksen C. 2008. The contribution of AMSR-E 18.7 and 10.7 GHz measurements to improved boreal forest snow water equivalent retrievals. Remote Sens Environ, 112: 2701-710 CrossRef
    9. Foster J L, Chang A T C, Hall D K. 1997. Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology. Remote Sens Environ, 62: 132-42 CrossRef
    10. Foster J L, Hall D K, Chang A T C, et al. 1984. An overview of passive microwave snow research and results. Rev Geophys Space Phys, 22: 195-08 CrossRef
    11. Go?ta K, Walker A, Goodison B. 2003. Algorithm development for the estimation of snow water equivalent in the boreal forest using passive microwave data. Int J Remote Sens, 24: 1097-102 CrossRef
    12. Grody N C, Basist A N. 1996. Global identification of snowcover using SSM/I measurements. IEEE Trans Geosci Remote Sens, 34: 237-49 CrossRef
    13. Grody N C. 1991. Classification of snow cover and precipitation using the special sensor microwave imager. J Geophys Res, 96: 7423-435 CrossRef
    14. Guo Y, Shi J, Du J, et al. 2011. A topographic correction technique for satellite radiometer measurement with high resolution DEM. Int J Remote Sens, 32: 8899-913 CrossRef
    15. Hallikainen M T, Jolma P. 1992. Comparison of algorithms for retrieval of snow water equivalent from Nimbus-7 SMMR data in Finland. IEEE Trans Geosci Remote Sens, 30: 124-31 CrossRef
    16. Hofer R, M?tzler C. 1980. Investigation of snow parameters by radiometry in the 3- to 60-mm wavelength region. J Geophys Res, 85: 453-60 CrossRef
    17. Kelly R E J. 2009. The AMSR-E snow depth algorithm: Description and initial results. J Remote Sens Soc Japan, 29: 307-17
    18. Koenig L S, Forster R R. 2004. Evaluation of passive microwave snow water equivalent algorithms in the depth hoar-dominated snowpack of the Kuparuk River Watershed, Alaska, USA. Remote Sens Environ, 93: 511-27 CrossRef
    19. Liston E G. 2004. Representing subgrid snow cover heterogeneities in regional and global models. J Climate, 17: 1381-397 CrossRef
    20. Li X J, Liu Y J, Zhu X X, et al. 2007. Snow cover identification with SSM/I data in China. J Appl Meteor Sci, 18: 12-0
    21. Rott H, Sturm K. 1991. Microwave signature measurements of Antarctic and Alpine snow. Proceedings of the 11th EARSeL Symposium, European Association of Remote Sensing Laboratories in Boulogne-Billancourt. 140-51
    22. Savoie M H, Armstrong R L, Brodzik M J, et al. 2009. Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau. Remote Sens Environ, 113: 2661-669 CrossRef
    23. Shuman C, Alley R. 1993. Spatial and temporal characterization of hoar formation in central Greenland using SSM/I brightness temperatures. Geophys Res Lett, 20: 2643-646 CrossRef
    24. Singh P R, Gan T Y. 2000. Retrieval of snow water equivalent using passive microwave brightness temperature data. Remote Sens Environ, 74: 275-86 CrossRef
    25. Sun Z W. 2007. Estimate snow depth and snow water equivalent algorithm for FY-3 MWRI and development of system. Master Thesis. Beijing: Beijing Normal University
    26. Tait A B. 1998. Estimation of snow water equivalent using passive microwave radiation data. Remote Sens Environ, 64: 286-91 CrossRef
    27. Tedesco M, Wang J R. 2006. Atmospheric correction of AMSR-E brightness temperatures for dry snow cover mapping. IEEE Trans Geosci Remote Sens Lett, 3: 320-24 CrossRef
    28. Ulaby F T, Moore R K, Fung A. 1981. Microwave remote sensing: Active and passive, vol. 1: Microwave remote sensing fundamentals and radiometry. Reading, Massachusetts: Addison-Wesley-Longman. 456
    29. Wang J R, Tedesco M. 2007. Identification of atmospheric influences on the estimation of snow water equivalent from AMSR-E measurements. Remote Sens Environ, 111: 398-08 CrossRef
    30. Wang P, Jiang L, Zhang L, et al. 2010. Impact of terrain topography on retrieval of snow water equivalence using passive microwave remote sensing. In: Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium. 1757-760 CrossRef
    31. Wu T W, Wu G X. 2004. An empirical formula to compute snow cover fraction in GCMs. Adv Atmosph Sci, 21: 529-35 CrossRef
    32. Yang H, Weng F Z, Lv L Q, et al. 2011a. The FengYun-3 microwave radiation imager on-orbit verification. IEEE Trans Geosci Remote Sens, 49: 4552-560 CrossRef
    33. Yang H, Lv L Q, Xu H X, et al. 2011b. Evaluation of FY3B-MWRI instrument on-orbit calibration accuracy. In: Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium. 2252-254 CrossRef
  • 作者单位:LingMei Jiang (1)
    Pei Wang (1)
    LiXin Zhang (1)
    Hu Yang (2)
    JunTao Yang (1)

    1. State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing, 100875, China
    2. National Satellite Meteorological Center, China Meteorological Administration, Beijing, 100081, China
  • ISSN:1869-1897
文摘
The primary objective of this work is to develop an operational snow depth retrieval algorithm for the FengYun3B Microwave Radiation Imager (FY3B-MWRI) in China. Based on 7-year (2002-009) observations of brightness temperature by the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow depth from Chinese meteorological stations, we develop a semi-empirical snow depth retrieval algorithm. When its land cover fraction is larger than 85%, we regard a pixel as pure at the satellite passive microwave remote-sensing scale. A 1-km resolution land use/land cover (LULC) map from the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences, is used to determine fractions of four main land cover types (grass, farmland, bare soil, and forest). Land cover sensitivity snow depth retrieval algorithms are initially developed using AMSR-E brightness temperature data. Each grid-cell snow depth was estimated as the sum of snow depths from each land cover algorithm weighted by percentages of land cover types within each grid cell. Through evaluation of this algorithm using station measurements from 2006, the root mean square error (RMSE) of snow depth retrieval is about 5.6 cm. In forest regions, snow depth is underestimated relative to ground observation, because stem volume and canopy closure are ignored in current algorithms. In addition, comparison between snow cover derived from AMSR-E and FY3B-MWRI with Moderate-resolution Imaging Spectroradiometer (MODIS) snow cover products (MYD10C1) in January 2010 showed that algorithm accuracy in snow cover monitoring can reach 84%. Finally, we compared snow water equivalence (SWE) derived using FY3B-MWRI with AMSR-E SWE products in the Northern Hemisphere. The results show that AMSR-E overestimated SWE in China, which agrees with other validations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700