用户名: 密码: 验证码:
Evaluation of 89Zr-rituximab Tracer by Cerenkov Luminescence Imaging and Correlation with PET in a Humanized Transgenic Mouse Model to Image NHL
详细信息    查看全文
  • 作者:Arutselvan Natarajan (1)
    Frezghi Habte (1)
    Hongguang Liu (1)
    Ataya Sathirachinda (1)
    Xiang Hu (1)
    Zhen Cheng (1)
    Claude M. Nagamine (2)
    Sanjiv Sam Gambhir (1) (3)
  • 关键词:Cerenkov radiation ; Immuno ; CLI ; 89Zr ; rituximab ; huCD20 imaging
  • 刊名:Molecular Imaging and Biology
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:15
  • 期:4
  • 页码:468-475
  • 全文大小:425KB
  • 参考文献:1. Cerenkov PA (1934) Visible emission of clean liquids by action of γ-radiation. Comptes Rendus Doklady Akademii Nauk SSSR 2:3
    2. Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD (2009) Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol 54:N355-65 CrossRef
    3. Liu H, Ren G, Miao Z et al (2010) Molecular optical imaging with radioactive probes. PLoS One 5:e9470 CrossRef
    4. Xu Y, Liu H, Cheng Z (2011) Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging. J nucl med off publi Soc Nucl Med 52:2009-018
    5. Berger SL (1984) The use of Cerenkov radiation for monitoring reactions performed in minute volumes: examples from recombinant DNA technology. Anal Biochem 136:515-19 CrossRef
    6. Hansen BS (1980) An improved method for assaying pyrophosphate exchange measuring Cerenkov radiation. Anal Biochem 109:12-7 CrossRef
    7. Plesums J, Bunch WH (1971) Measurement of phosphorus following 32 P Cerenkov counting. Anal Biochem 42:360-62 CrossRef
    8. Cho JS, Taschereau R, Olma S et al (2009) Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip. Phys Med Biol 54:6757-771 CrossRef
    9. Spinelli AE, D'Ambrosio D, Calderan L, Marengo M, Sbarbati A, Boschi F (2010) Cerenkov radiation allows / in vivo optical imaging of positron emitting radiotracers. Phys Med Biol 55:483-95 CrossRef
    10. Liu H, Ren G, Liu S et al (2010) Optical imaging of reporter gene expression using a positron-emission-tomography probe. J Biomed Opt 15:060505 CrossRef
    11. Xu Y, Chang E, Liu H, Jiang H, Gambhir SS, Cheng Z (2012) Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging. J nucl med off publi Soc Nucl Med 53:312-17
    12. Ruggiero A, Holland JP, Lewis JS, Grimm J (2010) Cerenkov luminescence imaging of medical isotopes. J Nucl Med 51:1123-130 CrossRef
    13. Liu H, Zhang X, Xing B, Han P, Gambhir SS, Cheng Z (2010) Radiation-luminescence-excited quantum dots for / in vivo multiplexed optical imaging. Small 6:1087-091 CrossRef
    14. Natarajan A, Gowrishankar G, Nielsen CH et al (2012) Positron emission tomography of (64)Cu-DOTA-rituximab in a transgenic mouse model expressing human CD20 for clinical translation to image NHL. Mol Imaging Biol 14:608-16 CrossRef
    15. Park JC, An GI, Park SI et al (2011) Luminescence imaging using radionuclides: a potential application in molecular imaging. Nucl Med Biol 38:321-29 CrossRef
    16. Holland JP, Normand G, Ruggiero A, Lewis JS, Grimm J (2011) Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol Imaging 10(177-86):1-
    17. Grimm J (2012) Non-invasive Cerenkov luminescence imaging of lymphoma, leukemia and metastatic lymph nodes. ClinicalTrials.gov Identifier: NCT01664936
    18. Natarajan A, Habte F, Gambhir SS (2012) Development of a novel long-lived immunoPET tracer for monitoring lymphoma therapy in a humanized transgenic mouse model. Bioconjug Chem (in press)
    19. Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA Jr (1984) Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 72:77-9 CrossRef
    20. Nayak TK, Brechbiel MW (2009) Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug Chem 20:825-41 CrossRef
    21. Gong Q, Ou Q, Ye S et al (2005) Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol 174:817-26
    22. Irmler IM, Opfermann T, Gebhardt P et al (2010) / In vivo molecular imaging of experimental joint inflammation by combined (18)F-FDG positron emission tomography and computed tomography. Arthritis Res Ther 12:R203 CrossRef
    23. Dijkers EC, Kosterink JG, Rademaker AP et al (2009) Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J nucl med off publi Soc Nucl Med 50:974-81
    24. Holland JP, Caldas-Lopes E, Divilov V et al (2010) Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using Zr-DFO-trastuzumab. PLoS One 5:e8859 CrossRef
    25. Perk LR, Visser OJ, Stigter-van Walsum M et al (2006) Preparation and evaluation of (89)Zr-zevalin for monitoring of (90)Y-zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 33:1337-345 CrossRef
    26. Verel I, Visser GW, Boellaard R et al (2003) Quantitative 89Zr immuno-PET for / in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J nucl med off publi Soc Nucl Med 44:1663-670
    27. Mitchell GS, Gill RK, Boucher DL, Li C, Cherry SR (2011) / In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philos Transact A Math Phys Eng Sci 369:4605-619 CrossRef
    28. Liu H, Carpenter CM, Jiang H et al (2012) Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J Nucl Med 53:1579-584 CrossRef
    29. Kothapalli SR, Liu H, Liao JC, Cheng Z, Gambhir SS (2012) Endoscopic imaging of Cerenkov luminescence. Biomed Opt Express 3:1215-225 CrossRef
    30. Hu ZH, Liang JM, Yang WD et al (2010) Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation. Opt Express 18:24441-4450 CrossRef
    31. Li CQ, Mitchell GS, Cherry SR (2010) Cerenkov luminescence tomography for small-animal imaging. Opt Lett 35:1109-111 CrossRef
    32. Robertson R, Germanos MS, Manfredi MG, Smith PG, Silva MD (2011) Multimodal imaging with (18)F-FDG PET and Cerenkov luminescence imaging after MLN4924 treatment in a human lymphoma xenograft model. J nucl med off publi Soc Nucl Med 52:1764-769
  • 作者单位:Arutselvan Natarajan (1)
    Frezghi Habte (1)
    Hongguang Liu (1)
    Ataya Sathirachinda (1)
    Xiang Hu (1)
    Zhen Cheng (1)
    Claude M. Nagamine (2)
    Sanjiv Sam Gambhir (1) (3)

    1. Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, James H. Clark Center, 318 Campus Drive, E153, Stanford, CA, 94305, USA
    2. Department of Comparative Medicine, Stanford University, Stanford, CA, USA
    3. Bioengineering, Materials Science and Engineering, Stanford University, Stanford, CA, USA
文摘
Purpose This research aimed to study the use of Cerenkov luminescence imaging (CLI) for non-Hodgkin’s lymphoma (NHL) using 89Zr-rituximab positron emission tomography (PET) tracer with a humanized transgenic mouse model that expresses human CD20 and the correlation of CLI with PET. Procedures Zr-rituximab (2.6?MBq) was tail vein-injected into transgenic mice that express the human CD20 on their B cells (huCD20TM). One group (n--) received 2?mg/kg pre-dose (blocking) of cold rituximab 2?h prior to tracer; a second group (n--) had no pre-dose (non-blocking). CLI was performed using a cooled charge-coupled device optical imager. We also performed PET imaging and ex vivo studies in order to confirm the in vivo CLI results. At each time point (4, 24, 48, 72, and 96?h), two groups of mice were imaged in vivo and ex vivo with CLI and PET, and at 96?h, organs were measured by gamma counter. Results huCD20 transgenic mice injected with 89Zr-rituximab demonstrated a high-contrast CLI image compared to mice blocked with a cold dose. At various time points of 4-6?h post-radiotracer injection, the in vivo CLI signal intensity showed specific uptake in the spleen where B cells reside and, hence, the huCD20 biomarker is present at very high levels. The time–activity curve of dose decay-corrected CLI intensity and percent injected dose per gram of tissue of PET uptake in the spleen were increased over the time period (4-6?h). At 96?h, the 89Zr-rituximab uptake ratio (non-blocking vs blocking) counted (mean?±?standard deviation) for the spleen was 1.5?±-.6 for CLI and 1.9?±-.3 for PET. Furthermore, spleen uptake measurements (non-blocking and blocking of all time points) of CLI vs PET showed good correlation (R 2--.85 and slope--.576), which also confirmed the corresponding correlations parameter value (R 2--.834 and slope--.47) obtained for ex vivo measurements. Conclusions CLI and PET of huCD20 transgenic mice injected with 89Zr-rituximab demonstrated that the tracer was able to target huCD20-expressing B cells. The in vivo and ex vivo tracer uptake corresponding to the CLI radiance intensity from the spleen is in good agreement with PET. In this report, we have validated the use of CLI with PET for NHL imaging in huCD20TM.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700