用户名: 密码: 验证码:
A FVCOM-based unstructured grid wave, current, sediment transport model, I. Model description and validation
详细信息    查看全文
  • 作者:Lunyu Wu (1) (2)
    Changsheng Chen (3) (4)
    Peifang Guo (1)
    Maochong Shi (1)
    Jianhua Qi (3)
    Jianzhong Ge (4)
  • 关键词:FVCOM ; coupling ; radiation stress ; wave ; current ; sediment ; related bottom boundary layer ; morphology
  • 刊名:Journal of Ocean University of China
  • 出版年:2011
  • 出版时间:March 2011
  • 年:2011
  • 卷:10
  • 期:1
  • 页码:1-8
  • 全文大小:581KB
  • 参考文献:1. Bijker, E. W., Kalwijk, J. P. Th., and Pieters, T., 1974. Mass transport in gravity waves on a sloping bottom. / Proc. 14th Conf. Coastal Engineering, vol. 2. ASCE, New York, 447鈥?65.
    2. Booij, N., Haagsma, I. J. G., Holthuijsen, L. H., Kieftenburg, A. T. M. M., Ris, R. C., van der Westhuysen, A. J., and Zijlema, M., 2004. SWAN Cycle III version 40.51 User Manual. Delft University of Technology, Available: http://fluidmechanics.tudelft.nl/swan/index.htm.
    3. Burchard, H., 2002. / Applied Turbulence Modeling in Marine Waters. Lecture Notes in Earth Sciences, Springer: Berlin-Heidelberg-New York-Barcelona-Hong Kong-London-Milan Paris-Tokyo, 215pp.
    4. Chen, C. S., Liu, H. D., and Beardsley, R. C., 2003. An unstructured grid, finite-volume, three-dimensional, primitive equation ocean model: application to coastal ocean and estuaries. / Journal of Atmospheric and Oceanic Technology, 20: 159鈥?86. CrossRef
    5. Chen, C. S., Beardsley, R. C., and Cowles, G., 2006a. An unstructured grid, finite-volume coastal ocean model-FVCOM user manual, School for Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Second Edition. Technical Report SMAST/UMASSD-06-0602, 318pp.
    6. Chen, C. S., Beardsley, R. C., and Cowles, G., 2006b. An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Special Issue: / Advance in Computational Oceanography, / Oceanography, 19(1): 78鈥?9.
    7. Chen, C. S., Huang, H. S., Beardsley, R. C., Liu, H. D., Xu, Q. C., and Cowles, G., 2007. A finite-volume numerical approach for coastal ocean circulation studies: comparisons with finite difference models. / Journal of Geophysical Research, 112, C03018. DOI: 10.1029/2006JC003485. CrossRef
    8. Donelan, M. A., Dobson, F. W., and Smith, S. D., 1993. On the dependence of sea surface roughness on wave development. / Journal of Physical Oceanography, 23: 2143鈥?149. CrossRef
    9. Grant, W. D., and Madsen, O. S., 1979. Combined wave and current interaction with a rough bottom. / Journal of Geophysical Research, 84(C4): 1797鈥?808. CrossRef
    10. Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W. R., Hermann, A. J., Lanerolle, L., Levin, J., McWilliams, J. C., Miller, A. J., Moore, A. M., Powell, T. M., Shchepetkin, A. F., Sherwood, C. R., Signell, R. P., Warner, J. C., and Wilkin, J., 2008. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. / Journal of Computational Physics, 227: 3595鈥?624. CrossRef
    11. Huang, H. S., Chen, C. S., Cowles, G. W., Winant, C. D., Beardsley, R. C., Hedstrom, K. S., and Haidvogel, D. B., 2008. FVCOM validation experiments: comparisons with ROMS for three idealized barotropic test problems. / Journal of Physical Oceanography, 113, C07042. DOI: 10.1029/2007JC004557.
    12. Lai, Z. G., Chen, C. S., Cowles, G., and Beardsley, R. C., 2010a. A non-hydrostatic version of FVCOM, Part I: validation experiment. / Journal of Geophysical Research, 115. DOI: 10.1029/2009JC005525.
    13. Lai, Z. G., Chen, C. S., Cowles, G., and Beardsley, R. C., 2010b. A non-hydrostatic version of FVCOM, Part II: mechanistic study of tidally generated nonlinear internal waves in Massachusetts Bay. / Journal of Geophysical Research. DOI: 10.1029/2010JC006331.
    14. Liang, B. C., Li, H. J., and Lee, D. Y., 2007. Numerical study of three-dimensional suspended sediment transport in waves and currents. / Ocean Engineering, 34: 1569鈥?583. CrossRef
    15. Liu, H. Q., and Xie, L. A., 2009. A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989. / Continental Shelf Research, 29: 1454鈥?463. CrossRef
    16. Longuet-Higgins, M. S., and Stewart, R. W., 1960. Changes in the form of short gravity waves on long waves and tidal currents. / Journal of Fluid Mechanics, 8: 565鈥?83. CrossRef
    17. Longuet-Higgins, M. S., and Stewart, R. W., 1964. Radiation stress in water waves: a physical discussion with applications. / Deep Sea Research, 11: 529鈥?62.
    18. Longuet-Higgins, M. S., 1970a. Longshore currents generated by obliquely incident sea waves, 1. / Journal of Geophysical Research, 75(33): 6778鈥?789. CrossRef
    19. Longuet-Higgins, M. S., 1970b. Longshore currents generated by obliquely incident sea waves, 2. / Journal of Geophysical Research, 75(33): 6790鈥?801. CrossRef
    20. Mellor, G. L., and Yamada, T., 1982. Development of a turbulence closure model for geophysical fluid problem. / Reviews of Geophysics and Space Physics, 20: 851鈥?75. CrossRef
    21. Mellor, G. L., 2003. The three-dimensional current and surface wave equations. / Journal of Physical Oceanography, 33: 1978鈥?989. CrossRef
    22. Mellor, G. L., 2005. Some consequences of the three-dimensional currents and surface wave equations. / Journal of Physical Oceanography, 35: 2291鈥?298. CrossRef
    23. Mellor, G. L., 2008. The Depth-Dependent Current and Wave Interaction Equations: A Revision. / Journal of Physical Oceanography, 38: 2587鈥?596. CrossRef
    24. Moon, I. J., 2005. Impact of a coupled ocean wave-tide-circulation system on coastal modeling. / Ocean Modelling, 8: 203鈥?36. CrossRef
    25. Qi, J. H., Chen, C. S., and Beardsley, R. C., 2009. An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): Implementation, validations and applications. / Ocean Modelling, 28: 153鈥?66. CrossRef
    26. Roelvink, J. A., 2006. Coastal morphodynamic evolution techniques. / Coastal Engineering, 53: 277鈥?87. CrossRef
    27. S酶rensen Ole, R., Henrik Kofoed-Hansen and Jones Oliver P. 2006. Numerical modeling of wave-current interaction in tidal areas using an unstructured finite volume technique. Proceedings of the 30th International Conference of Coastal Engineering 2006, San Diego, California, USA. 1: 653鈥?65. CrossRef
    28. Tang, H. S., Keenb, T. R., and Khanbilvardi, R., 2009. A model-coupling framework for nearshore waves, currents, sediment transport, and seabed morphology. / Communications in Nonlinear Science and Numerical Simulation, 14(7): 2935鈥?947. CrossRef
    29. Tolman, H. L., 1990. The influence of unsteady, depths and currents of tides on wind-wave propagation in shelf seas. / Journal of Physical Oceanography, 20: 1166鈥?174. CrossRef
    30. Warner, J. C., Sherwood, C. R., Signell, R. P., Harris, C., and Arango, H. G., 2008. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. / Computers and Geosciences, 34: 1284鈥?306. CrossRef
    31. Xia, H. Y., Xia, Z. W., and Zhu, L. S., 2004. Vertical variation in radiation stress and wave-induced current. / Coastal Engineering, 51: 309鈥?21. CrossRef
    32. Xie, L. A., Wu, K. J., and Pietrafesa, L., and Zhang, C., 2001. A numerical study of wave-current interaction through surface and bottom stresses: Wind-driven circulation in the South Atlantic Bight under uniform winds. / Journal of Geophysical Research, 106(C8): 16 841鈥?6 855. CrossRef
  • 作者单位:Lunyu Wu (1) (2)
    Changsheng Chen (3) (4)
    Peifang Guo (1)
    Maochong Shi (1)
    Jianhua Qi (3)
    Jianzhong Ge (4)

    1. Physical Oceanography Laboratory, Ocean University of China, Qingdao, 266100, P. R. China
    2. First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, P. R. China
    3. School for Marine Science and Technology, University of Massachusetts-Dartmouth, New Bedford, Massachusetts, USA
    4. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, P. R. China
  • ISSN:1993-5021
文摘
An effort was made to couple FVCOM (a three-dimensional (3D), unstructured grid, Finite Volume Coastal Ocean Model) and FVCOM-SWAVE (an unstructured grid, finite-volume surface wave model) for the study of nearshore ocean processes such as tides, circulation, storm surge, waves, sediment transport, and morphological evolution. The coupling between FVCOM and FVCOM-SWAVE was achieved through incorporating 3D radiation stress, wave-current-sediment-related bottom boundary layer, sea surface stress parameterizations, and morphology process. FVCOM also includes a 3D sediment transport module. With accurate fitting of irregular coastlines, the model provides a unique tool to study sediment dynamics in coastal ocean, estuaries, and wetlands where local geometries are characterized by inlets, islands, and intertidal marsh zones. The model was validated by two standard benchmark tests: 1) spectral waves approaching a mild sloping beach and 2) morphological changes of seabed in an idealized tidal inlet. In Test 1, model results were compared with both analytical solutions and laboratory experiments. A further comparison was also made with the structured grid Regional Ocean Model System (ROMS), which provides an insight into the performance of the two models with the same open boundary forcing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700