用户名: 密码: 验证码:
Improving robotic machining accuracy through experimental error investigation and modular compensation
详细信息    查看全文
  • 作者:Ulrich Schneider ; Manuel Drust…
  • 关键词:Robotic machining ; Robot dynamics ; Robot modelling ; Error compensation ; Optical tracking
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2016
  • 出版时间:July 2016
  • 年:2016
  • 卷:85
  • 期:1-4
  • 页码:3-15
  • 全文大小:2,410 KB
  • 参考文献:1.Tolio T, Urgo M (2013) Design of flexible transfer lines: a case-based reconfiguration cost assessment. J Manuf Syst 32(2):325–334CrossRef
    2.International Federation of Robotics (2013) World Robotics 2012, Statistical Yearbook
    3.Liang J, Bi S (2010) Design and experimental study of an end effector for robotic drilling. Int J Adv Manuf Technol 50(1–4):399–407CrossRef
    4.Schneider U, Ansaloni M, Drust M, Leali F, Verl A (2013) Experimental investigation of error sources in robot machining. In: International Conference on Flexible Automation and Intelligent Manufacturing (FAIM), pp. 14-26, Porto, Portugal
    5.Standard ISO 9283 (1998) Manipulating industrial robots—performance criteria and related test methods
    6.Siciliano B, Khatib O (2008) Handbook of robotics. Springer, New YorkCrossRef MATH
    7.Shiakolas PS, Conrad KL, Yih TC (2002) On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots. Int J Model Simul 22:245–254
    8.Mustafa SK, Pey YT, Yang G, Chen I (2010) A geometrical approach for online error compensation of industrial manipulator. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 738-743, July 6-9, Montreal, Canada
    9.Breth JF, Vasselin E, Lefebvre D, Dakyo B (2005) Determination of the repeatability of a Kuka robot using the stochastic ellipsoid approach. In: IEEE International Conference on Robotics and Automation, pp. 4339-4344, Barcelona, Spain
    10.Heisel U, Richter F, Wurst K-H (1997) Thermal behavior of industrial robots and possibilities for errors compensation. CIRP Ann Manuf Technol 46:283–286CrossRef
    11.Zhan Q, Wang X (2012) Hand-eye calibration and positioning for a robot drilling system. Int J Adv Manuf Technol 61(5–8):691–701CrossRef
    12.Lehmann C, Pellicciari M, Drust M, Gunnink JW (2013) Machining with industrial robots: the COMET project approach. In: International Conference on Flexible Automation and Intelligent Manufacturing (FAIM), pp. 27-36, Porto, Portugal
    13.Pan Z, Polden J, Larkin N, Van Duin S, Norrish J (2012) Recent progress on programming methods for industrial robots. Robot Comput Integr Manuf 28:87–94CrossRef
    14.Tarn TJ, Song M, Xi M, Ghosh BJ (1996) Multi-sensor fusion scheme for calibration-free stereo vision in a manufacturing workcell. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 416-423, Washington DC, USA
    15.Legnani G, Tosi D, Fassi I, Giberti I, Cinquemani S (2010) The “point of isotropy” and other properties of serial and parallel manipulators. Mech Mach Theory 45:1407–1423CrossRef MATH
    16.Dietz T, Schneider U, Barho M, Oberer-Treitz S, Drust M, Hollmann R, Hägele M (2012) Programming system for efficient use of robots for deburring in SME environments. In: 7th German Conference on Robotics (Robotik), Munich, Germany
    17.Oh YT (2011) Influence of the joint angular characteristics on the accuracy of industrial robots. Ind Robot 38:406–418CrossRef
    18.Erkaya S (2012) Investigation of joint clearance effects on welding robot manipulators. Robot Comput Integr Manuf 28:449–457CrossRef
    19.Gong C, Yuan J, Ni J (2000) Nongeometric error identification and compensation for robotic system by inverse calibration. Int J Mach Tools Manuf 40:2119–2137CrossRef
    20.Ruderman M, Hoffmann F, Bertram T (2009) Modeling and identification of elastic robot joints with hysteresis and backlash. IEEE Trans Ind Electron 56:3840–3847CrossRef
    21.Kumagai S, Ohishi K, Miyazaki T (2009) high performance robot motion control based on zero phase error notch filter and D-PD control. In: IEEE International Conference on Mechatronics, pp. 1-6, Malaga, Spain
    22.Marton L, Lantos B (2009) Friction and backlash measurement and identification method for robotic arms. In: IEEE International Conference on Advanced Robotics, pp. 1-6, Munich, Germany
    23.Thomsen S, Fuchs FW (2009) Speed control of torsional drive systems with backlash. In: 13th European Conference on Power Electronics and Applications, pp. 1-10, Barcelona, Spain
    24.Carvalho Bittencourt A, Wernholt E, Sander-Tavallaey S, Brogardh T (2010) An extended friction model to capture load and temperature effects in robot joints. In: IEEE International Conference on Intelligent Robots and Systems, pp. 6161-6167, Taipei, Taiwan
    25.Jin M, Jin Y, Chang PH, Choi C (2009) High-accuracy trajectory tracking of industrial robot manipulators using time delay estimation and terminal sliding mode. In: 35th Annual Conference of IEEE Industrial Electronics, pp. 3095-3099, Porto, Portugal
    26.Merlet JP (2009) Interval analysis for certified numerical solution of problems in robotics. Int J Appl Math Comput Sci 19:399–412CrossRef MATH
    27.Zhang H, Wang J, Zhang G, Gan Z, Pan Z, Cui H, Zhu Z (2005) Machining with flexible manipulator: toward improving robotic machining performance. In: IEEE International Conference on Advanced Intelligent Mechatronics, pp. 1127-1132, Monterey, California, USA
    28.Zhang H, Pan Z (2008) Robotic machining: material removal rate control with a flexible manipulator. In: IEEE Conference on Robotics, Automation and Mechatronics, pp. 30-35, Chengdu, China
    29.Pan Z, Zhang H, Zhu Z, Wang J (2006) Chatter analysis of robotic machining process. J Mater Process Technol 173:301–309CrossRef
    30.Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51:363–376CrossRef
    31.Liu X-W, Cheng K, Webb D, Longstaf AP, Widiyarto MH (2004) Improved dynamic cutting force model in peripheral milling. Part II: experimental verification and prediction. Int J Adv Manuf Technol 24:794–805CrossRef
    32.Surdilovic C, Dragoljub Zhao H, Schreck G, Krueger J (2012) Advanced methods for small batch robotic machining of hard materials. In: 7th German Conference on Robotics (Robotik), pp.1-6, 21-22 May, Munich, Germany
    33.Tolio T, Ceglarek D, ElMaraghy HA, Fischer A, Hu SJ, Laperrière L, Newman ST, Váncza J (2010) SPECIES—coevolution of products, processes and production systems. CIRP Ann Manuf Technol 59(2):672–693. doi:10.​1016/​j.​cirp.​2010.​05.​008 CrossRef
    34.Pellicciari M, Leali F, Andrisano AO, Pini F (2012) Enhancing changeability of automotive hybrid reconfigurable systems in digital environments. Int J Interact Des Manuf 6:251–263CrossRef
    35.Lehmann C, Halbauer M, Euhus D, Overbeck D (2012) Milling with industrial robots: strategies to reduce and compensate process force induced accuracy influences. In: 17th IEEE International Conference on Emerging Technologies & Factory Automation (ETFA), pp. 1-4, Kraków, Poland
    36.Lehmann C, Olofsson B, Nilsson K, Halbauer M, Haage M, Robertsson A, Sörnmo O, Berger U (2013) Robot joint modeling and parameter identification using the clamping method. In: IFAC Conference on Manufacturing Modeling, Management and Control (MIM), pp. 813-818, Saint Petersburg, Russia
    37.Lehmann C, Halbauer M, van der Zwaag J, Schneider U, Berger U (2013) Offline path compensation to improve accuracy of industrial robots for machining applications. In: Proceedings of 14th Automation Congress, VDI-report 2209, pp. 147-152, Baden-Baden, Germany
    38.Puzik A (2011) Genauigkeitssteigerung bei der spanenden bearbeitung mit industrierobotern durch fehlerkompensation mit 3D Ausgleichsaktorik, Dissertation, University Stuttgart, Fraunhofer IPA
    39.Kienzle O (1952) Bestimmung von kräften an werkzeugmaschinen. VDI-Z 94:299–305
    40.Bennett D, Hollerbach J, Henri P (1992) Kinematic calibration by direct estimation of the Jacobian matrix. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 351-357, Nice, France
    41.Nilsson K (2012) Patent application SE-1251196-0: method and system for determination of at least one property of a manipulator
    42.Wang Z, Mastrogiacomo L, Franceschini F, Maropoulos P (2011) Experimental comparison of dynamic tracking performance of iGPS and laser tracker. Int J Adv Manuf Technol 56(1–4):205–213CrossRef
    43.Schneider U, Diaz Posada JR, Drust M, Verl A (2013) Position control of an industrial robot using an optical measurement system for machining purposes. In: International Conference on Manufacturing Research (ICMR), pp. 307-312, Cranfield University, United Kingdom
    44.Schneider U, Oloffson B, Sörnmo O, Drust M, Robertsson A, Hägele M, Johansson R (2013) Integrated approach to robotic machining with macro/micro actuation. In: International Journal of Robotics and Computer-Integrated Manufacturing, submitted
    45.Puzik A, Meyer C, Verl A (2010) Industrial robots for machining processes in combination with a 3D-piezo-compensation-mechanism. In: 7th CIRP International Conference on Intelligent Computation in Manufacturing Engineering (ICME), Capri, Italy
    46.Schneider U, Drust M, Puzik A, Verl A (2013) Compensation of errors in robot machining with a parallel 3D-piezo compensation mechanism. In: 46th CIRP Conference on Manufacturing Systems, pp. 305-310, Sesimbra, Portugal
    47.Olofsson B, Sörnmo O, Schneider U, Robertsson A, Puzik A, Johansson R (2011) Modeling and control of a piezo-actuated high-dynamic compensation mechanism for industrial robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4704-4709
    48.Sörnmo O, Olofsson B, Schneider U, Robertsson A, Johansson R (2012) Increasing the milling accuracy for industrial robots using a piezo-actuated high-dynamic micro manipulator. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp.104-110, Kaohsiung, Taiwan
  • 作者单位:Ulrich Schneider (1)
    Manuel Drust (1)
    Matteo Ansaloni (2)
    Christian Lehmann (3)
    Marcello Pellicciari (2)
    Francesco Leali (2)
    Jan Willem Gunnink (4)
    Alexander Verl (1)

    1. Department of Robot and Assistive Systems, Fraunhofer Institute for Manufacturing Engineering and Automation (IPA), Nobelstr. 12, 70565, Stuttgart, Germany
    2. DIEF Engineering Department Enzo Ferrari, University of Modena and Reggio Emilia, Via Vignolese 905/B, 41125, Modena, Italy
    3. Chair of Automation Technology, Brandenburg University of Technology, Siemens-Halske-Ring 14, 03046, Cottbus, Germany
    4. Delcam PLC, Small Heath Business Park, Birmingham, B10 0HJ, UK
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Production and Logistics
    Mechanical Engineering
    Computer-Aided Engineering and Design
  • 出版者:Springer London
  • ISSN:1433-3015
  • 卷排序:85
文摘
Machining using industrial robots is currently limited to applications with low geometrical accuracies and soft materials. This paper analyzes the sources of errors in robotic machining and characterizes them in amplitude and frequency. Experiments under different conditions represent a typical set of industrial applications and allow a qualified evaluation. Based on this analysis, a modular approach is proposed to overcome these obstacles, applied both during program generation (offline) and execution (online). Predictive offline compensation of machining errors is achieved by means of an innovative programming system, based on kinematic and dynamic robot models. Real-time adaptive machining error compensation is also provided by sensing the real robot positions with an innovative tracking system and corrective feedback to both the robot and an additional high-dynamic compensation mechanism on piezo-actuator basis. Keywords Robotic machining Robot dynamics Robot modelling Error compensation Optical tracking

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700