用户名: 密码: 验证码:
A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys
详细信息    查看全文
  • 作者:A. Imandoust ; C. D. Barrett ; T. Al-Samman ; K. A. Inal…
  • 刊名:Journal of Materials Science
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:52
  • 期:1
  • 页码:1-29
  • 全文大小:5,847 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
  • 卷排序:52
文摘
Magnesium, the lightest structural metal, is approximately four times lighter than steel—the most widely used metal in industrial applications. Currently available Mg alloys, however, are impractically expensive for use in automotive structural components, as severe ductility problems require forming operations at elevated temperatures and an exclusion from critical safety components. With a strong impetus in research having sprung up during the last two decades, addition of rare-earth elements in small quantities emerged as a potential solution for simultaneously delivering the ductility and weight requirements for automotive applications. These improvements are arguably achieved by virtue of texture weakening and enhancement of non-basal slip. However, ways by which rare-earth elements modify texture remain very elusive, and no consensus on the driving mechanisms has been reached in the literature as of yet. We take a look back at different paradigms held for the action of rare-earth additions, and examine key facts that may reconcile controversies. We attempt to identify critical gaps and suggest venues to overcome them. These gaps, once filled, may promote Mg alloys to become a stronghold for lightweighting, which will exceptionally benefit our environment and wellbeing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700