用户名: 密码: 验证码:
Selective control method for multiple magnetic helical microrobots
详细信息    查看全文
  • 作者:Soichiro Tottori (1)
    Naohiko Sugita (1)
    Reo Kometani (1)
    Sunao Ishihara (1)
    Mamoru Mitsuishi (1)
  • 关键词:Swimming microrobots ; Magnetic microrobots ; Selective control ; Design and control ; Rotating magnetic field ; Electromagnetic actuation
  • 刊名:Journal of Micro-Nano Mechatronics
  • 出版年:2011
  • 出版时间:4 - June 2011
  • 年:2011
  • 卷:6
  • 期:3
  • 页码:89-95
  • 全文大小:424KB
  • 参考文献:1. Kikuchi K, Yamazaki A, Sendoh M, Ishiyama K, Arai K (2005) Fabrication of a spiral type magnetic micromachine for trailing a wire. IEEE Trans Magn 41(10):4012-014 CrossRef
    2. Ishiyama K, Arai KI, Sendoh M, Yamazaki A (2003) Spiral type micro-machine for medical applications. J Micromech 2(1):77-6 CrossRef
    3. Kline TR, Paxton WF, Mallouk TE, Sen A (2005) Catalytic Nanomotors: Remote-Controlled Autonomous Movement of Striped Metallic Nanorods. Angew Chem 117(5):754-56 CrossRef
    4. Behkam B, Sitti M (2007) Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl Phys Lett 90:023902 CrossRef
    5. Honda T, Arai KI, Ishiyama K (1996) Micro swimming mechanisms propelled by external magnetic fields. IEEE Trans Magn 32(5):5085-087 CrossRef
    6. Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ (2009) Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 94:064107 CrossRef
    7. Zhang L, Abbott JJ, Dong LX, Peyer KE, Kratochvil BE, Zhang H, Nelson BJ (2009) Characterizing the swimming properties of artificial bacterial flagella. Nano Lett 9(10):3663-667 CrossRef
    8. Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9:2243-245 CrossRef
    9. Purcell EM (1977) Life at low Reynolds number. Am J Phys 45(1):3-1 CrossRef
    10. Behkam B, Sitti M (2006) Design methodology for biomimetic propulsion of miniature swimming robots. ASME J Dyn Syst, Meas Control 128:36-3 CrossRef
    11. Abbott JJ, Peyer KE, Lagomarsino MC, Zhang L, Dong LX, Kaliakatsos IK, Nelson BJ (2009) How should microrobots swim? Int J Robot Res 28(11-2):1434-447 CrossRef
    12. Pawashe C, Floyd S, Sitti M (2009) Multiple magnetic microrobot control using electrostatic anchoring. Appl Phys Lett 94:164108 (94-6) CrossRef
    13. Frutiger DR, Vollmers K, Kratochvil BE, Nelson BJ (2009) Small, fast and under control: wireless resonant magnetic micro-agents. Int J Robot Res 29(5):613-36 CrossRef
    14. Sendoh M, Ishiyama K, Arai K (2002) Direction and individual control of magnetic micromachine. IEEE Trans Magn 38(5):3356-358 CrossRef
    15. Yamazaki A, Sendo M, Ishiyama K, Hayase T, Arai KI (2003) Three-dimensional analysis of swimming properties of a spiral-type magnetic micro machine. Sens Actuators A 105(1):103-08 CrossRef
    16. Bozorth RM (1951) Ferromagnetism. D. Van Nostrand Company, Inc., Princeton
    17. Abbot JJ, Ergeneman O, Kummer MP, Hirt AM, Nelson BJ (2007) Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies. IEEE Trans Robot 23(6):1247-252 CrossRef
    18. Osborn JA (1945) Demagnetizing factors of the general ellipsoid. Phys Rev 67(11/12):351-57 CrossRef
  • 作者单位:Soichiro Tottori (1)
    Naohiko Sugita (1)
    Reo Kometani (1)
    Sunao Ishihara (1)
    Mamoru Mitsuishi (1)

    1. Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
  • ISSN:1865-3936
文摘
Microrobots have been investigated in recent years with the objective of discovering applications in the biomedical industry. The selective control of multiple microrobots is a challenging task; however, such control would allow for the dexterous manipulation of microscale objects. In this paper, we present a novel control method for the selective actuation of microrobots using only an external magnetic field. Such selective actuation of microrobots can be achieved by combining two types of external magnetic field rotations and two microrobotic designs, one with a bar-shaped head and the other with a cross-shaped head. After the type of rotation is chosen, the bar-shaped or the cross-shaped head can be individually actuated or both of them can be actuated simultaneously. To demonstrate the feasibility of the proposed method, millimeter-sized prototypes were fabricated and their individual actuation was successfully demonstrated in silicone oil. The prototypes showed the ability to swim in silicone oil (viscosity: 100 cSt) with a synchronized frequency of up to 0.25?Hz. This result suggests that the proposed method can be used in water at high input frequencies while taking the scaling effect into consideration. Hence, this method is expected to have many practical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700