用户名: 密码: 验证码:
Sequential processing of mannose-containing glycans by two α-mannosidases from Solitalea canadensis
详细信息    查看全文
  • 作者:Fang F. Liu ; Anna Kulinich ; Ya M. Du ; Li Liu ; Josef Voglmeir
  • 关键词:Bacterial glycosidases ; Mannosidase ; Mannose ; containing oligosaccharide ; N ; glycans ; Oligomannose ; Solitalea canadensis
  • 刊名:Glycoconjugate Journal
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:33
  • 期:2
  • 页码:159-168
  • 全文大小:598 KB
  • 参考文献:1.Suits M.D., Zhu Y., Taylor E.J., Walton J., Zechel D.L., Gilbert H.J., Davies G.J.: Structure and kinetic investigation of Streptococcus pyogenes family GH38 alpha-mannosidase. PLoS ONE. 5, e9006 (2010)CrossRef PubMed PubMedCentral
    2.Aebi M., Bernasconi R., Clerc S., Molinari M.: N-glycan structures: recognition and processing in the ER. Trends in Biochemical Sciences. 35, 74–82 (2010)CrossRef PubMed
    3.Clerc F., Reiding K., Jansen B., Kammeijer G.M., Bondt A., Wuhrer M.: Human plasma protein N-glycosylation. Glycoconj. J. 1–35 (2015)
    4.Suzuki T., Funakoshi Y.: Free N-linked oligosaccharide chains: formation and degradation. Glycoconj. J. 23, 291–302 (2006)CrossRef PubMed
    5.Gregg K.J., Zandberg W.F., Hehemann J.H., Whitworth G.E., Deng L., Vocadlo D.J., Boraston A.B.: Analysis of a new family of widely distributed metal-independent alpha-mannosidases provides unique insight into the processing of N-linked glycans. J. Biol. Chem. 286, 15586–15596 (2011)CrossRef PubMed PubMedCentral
    6.Kumar B.G., Pohlentz G., Mormann M., Kumar N.S.: Characterization of α-mannosidase from Dolichos lablab seeds: partial amino acid sequencing and N-glycan analysis. Protein Expres. Purif. 89, 7–15 (2013)CrossRef
    7.Aikawa, J.-i., Matsuo, I. and Ito, Y.: In vitro mannose trimming property of human ER α-1,2 mannosidase I. Glycoconj. J. 29, 35–45 (2012)
    8.Herscovics A.: Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim. Biophys. Acta. 1473, 96–107 (1999)CrossRef PubMed
    9.Szumilo T., Kaushal G.P., Hori H., Elbein A.D.: Purification and properties of a glycoprotein processing alpha-mannosidase from mung bean seedlings. Plant Physiol. 81, 383–389 (1986)CrossRef PubMed PubMedCentral
    10.Nebenfuhr A., Gallagher L.A., Dunahay T.G., Frohlick J.A., Mazurkiewicz A.M., Meehl J.B., Staehelin L.A.: Stop-and-go movements of plant golgi stacks are mediated by the acto-myosin system. Plant Physiol. 121, 1127–1142 (1999)CrossRef PubMed PubMedCentral
    11.Maruyama Y., Nakajima T., Ichishima E.: A 1,2-alpha-D-mannosidase from a Bacillus sp.: purification, characterization, and mode of action. Carbohydr. Res. 251, 89–98 (1994)CrossRef PubMed
    12.Nemcovicova I., Sestak S., Rendic D., Plskova M., Mucha J., Wilson I.B.: Characterisation of class I and II alpha-mannosidases from Drosophila melanogaster. Glycoconj. J. 30, 899–909 (2013)CrossRef PubMed
    13.Berg T., King B., Meikle P.J., Nilssen O., Tollersrud O.K., Hopwood J.J.: Purification and characterization of recombinant human lysosomal alpha-mannosidase. Mol. Genet. Metab. 73, 18–29 (2001)CrossRef PubMed
    14.Tejavath K., Nadimpalli S.: Purification and characterization of a class II α-Mannosidase from Moringa oleifera seed kernels. Glycoconj. J. 31, 485–496 (2014)CrossRef PubMed
    15.Shashidhara K.S., Gaikwad S.M.: Class II alpha-mannosidase from aspergillus fischeri: energetics of catalysis and inhibition. Int. J. Biol. Macromol. 44, 112–115 (2009)CrossRef PubMed
    16.Angelov A., Putyrski M., Liebl W.: Molecular and biochemical characterization of alpha-glucosidase and alpha-mannosidase and their clustered genes from the thermoacidophilic archaeon Picrophilus torridus. J. Bacteriol. 188, 7123–7131 (2006)CrossRef PubMed PubMedCentral
    17.Nankai H., Hashimoto W., Murata K.: Molecular identification of family 38 alpha-mannosidase of Bacillus sp. strain GL1, responsible for complete depolymerization of xanthan. Appl Environ Microbiol. 68, 2731–2736 (2002)CrossRef PubMed PubMedCentral
    18.Zhu Y.P., Suits M.D.L., Thompson A.J., Chavan S., Dinev Z., Dumon C., Smith N., Moremen K.W., Xiang Y., Siriwardena A., Williams S.J., Gilbert H.J., Davies G.J.: Mechanistic insights into a Ca2 + −dependent family of alpha-mannosidases in a human gut symbiont. Nat. Chem. Biol. 6, 125–132 (2010)CrossRef PubMed PubMedCentral
    19.Cuskin F., Lowe E.C., Temple M.J., Zhu Y., Cameron E.A., Pudlo N.A., Porter N.T., Urs K., Thompson A.J., Cartmell A., Rogowski A., Hamilton B.S., Chen R., Tolbert T.J., Piens K., Bracke D., Vervecken W., Hakki Z., Speciale G., Munoz-Munoz J.L., Day A., Pena M.J., McLean R., Suits M.D., Boraston A.B., Atherly T., Ziemer C.J., Williams S.J., Davies G.J., Abbott D.W., Martens E.C., Gilbert H.J.: Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 517, 165–169 (2015)CrossRef PubMed
    20.Takegawa K., Yamaguchi S., Miki S., Jikibara T., Iwahara S.: Purification and characterization of a novel lyase from Cellulomonas sp. that degrades Fusarium and Gibberella acidic polysaccharides. Agric. Biol. Chem. 55, 1969–1975 (1991)CrossRef PubMed
    21.Rivera-Marrero C.A., Ritzenthaler J.D., Roman J., Moremen K.W.: Molecular cloning and expression of an alpha-mannosidase gene in Mycobacterium tuberculosis. Microb. Pathog. 30, 9–18 (2001)CrossRef PubMed
    22.Carrington S.D., Irwin J.A., Liu L., Rudd P.M., Matthews E., Corfield A.P.: Analysing mucin degradation. Methods Mol. Biol. 842, 191–215 (2012)CrossRef PubMed
    23.Nakajima M., Imamura H., Shoun H., Wakagi T.: Unique metal dependency of cytosolic alpha-mannosidase from Thermotoga maritima, a hyperthermophilic bacterium. Arch. Biochem. Biophys. 415, 87–93 (2003)CrossRef PubMed
    24.Dupoiron S., Zischek C., Ligat L., Carbonne J., Boulanger A., Duge de Bernonville T., Lautier M., Rival P., Arlat M., Jamet E., Lauber E., Albenne C.: The N-Glycan cluster from Xanthomonas campestris pv. campestris: a toolbox for sequential plant N-glycan processing. J. Biol. Chem. 290, 6022–6036 (2015)CrossRef PubMed PubMedCentral
    25.Wong-Madden S.T., Landry D.: Purification and characterization of novel glycosidases from the bacterial genus Xanthomonas. Glycobiology. 5, 19–28 (1995)CrossRef PubMed
    26.Christensen P.: Flexibacter Canadensis sp. nov. Int. J. Syst. Bacteriol. 30, 429–432 (1980)CrossRef
    27.Weon H.Y., Kim B.Y., Lee C.M., Hong S.B., Jeon Y.A., Koo B.S., Kwon S.W.: Solitalea koreensis gen. nov., sp. nov. and the reclassification of [Flexibacter] canadensis as Solitalea canadensis comb. nov. Int J. Syst. Evol. Microbiol. 59, 1969–1975 (2009)CrossRef PubMed
    28.Wei S., Kulinich A., Duan X.C., Liu L., Voglmeir J.: Discovery and biochemical characterization of UDP-glucose dehydrogenase from granulibacter bethesdensis. Protein Pept. Lett. 22, 628–634 (2015)CrossRef PubMed
    29.Mahuku G.S.: A simple extraction method suitable for PCR-based analysis of plant, fungal, and bacterial DNA. Plant Mol. Biol. Rep. 22, 71–81 (2004)CrossRef
    30.Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685 (1970)CrossRef PubMed
    31.Huang K., Wang M.M., Kulinich A., Yao H.L., Ma H.Y., Martinez J.E., Duan X.C., Chen H., Cai Z.P., Flitsch S.L., Liu L., Voglmeir J.: Biochemical characterisation of the neuraminidase pool of the human gut symbiont Akkermansia muciniphila. Carbohydr. Res. 415, 60–65 (2015)CrossRef PubMed
    32.Wang T., Cai Z.P., Gu X.Q., Ma H.Y., Du Y.M., Huang K., Voglmeir J., Liu L.: Discovery and characterization of a novel extremely acidic bacterial N-glycanase with combined advantages of PNGase F and A. Biosci. Rep. 34, e00149 (2014)CrossRef PubMed PubMedCentral
    33.Cai Z.P., Hagan A.K., Wang M.M., Flitsch S.L., Liu L., Voglmeir J.: 2-Pyridylfuran: a new fluorescent tag for the analysis of carbohydrates. Anal. Chem. 86, 5179–5186 (2014)CrossRef PubMed
    34.Ceroni A., Maass K., Geyer H., Geyer R., Dell A., Haslam S.M.: GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans†. Journal of Proteome Research. 7, 1650–1659 (2008)CrossRef PubMed
    35.Wattam A.R., Abraham D., Dalay O., Disz T.L., Driscoll T., Gabbard J.L., Gillespie J.J., Gough R., Hix D., Kenyon R., Machi D., Mao C., Nordberg E.K., Olson R., Overbeek R., Pusch G.D., Shukla M., Schulman J., Stevens R.L., Sullivan D.E., Vonstein V., Warren A., Will R., Wilson M.J., Yoo H.S., Zhang C., Zhang Y., Sobral B.W.: PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 42, D581–D591 (2014)CrossRef PubMed PubMedCentral
    36.Rangarajan M., Aduse-Opoku J., Hashim A., Paramonov N., Curtis M.A.: Characterization of the alpha- and beta-mannosidases of Porphyromonas gingivalis. J. Bacteriol. 195, 5297–5307 (2013)CrossRef PubMed PubMedCentral
    37.Jelinekkelly S., Herscovics A.: Glycoprotein biosynthesis in Saccharomyces cerevisiae - purification of the alpha-mannosidase which removes one specific mannose residue from Man9GlcNAc. J. Biol. Chem. 263, 14757–14763 (1988)
    38.Forsee W.T., Palmer C.F., Schutzbach J.S.: Purification and characterization of an alpha-1,2-mannosidase involved in processing asparagine-linked oligosaccharides. J. Biol. Chem. 264, 3869–3876 (1989)PubMed
    39.Tulsiani D.R., Hubbard S.C., Robbins P.W., Touster O.: Alpha-D-mannosidases of rat liver Golgi membranes. Mannosidase II is the GlcNAcMAN5-cleaving enzyme in glycoprotein biosynthesis and mannosidases Ia and IB are the enzymes converting Man9 precursors to Man5 intermediates. J. Biol. Chem. 257, 3660–3668 (1982)PubMed
    40.Hossain M.A., Nakamura K., Kimura Y.: Alpha-mannosidase involved in turnover of plant complex type N-glycans in tomato (Lycopersicum esculentum) fruits. Biosci. Biotechnol. Biochem. 73, 140–146 (2009)CrossRef PubMed
    41.Ziegler F.D., Trimble R.B.: Glycoprotein biosynthesis in yeast: purification and characterization of the endoplasmic reticulum Man9 processing alpha-mannosidase. Glycobiology. 1, 605–614 (1991)CrossRef PubMed
    42.Schneikert J., Herscovics A.: Characterization of a novel mouse recombinant processing alpha-mannosidase. Glycobiology. 4, 445–450 (1994)CrossRef PubMed
    43.Hansen D.K., Webb H., Nielsen J.W., Harris P., Winther J.R., Willemoes M.: Mutational analysis of divalent metal ion binding in the active site of class II alpha-mannosidase from Sulfolobus solfataricus. Biochemistry. 54, 2032–2039 (2015)CrossRef PubMed
    44.Numao S., Kuntz D.A., Withers S.G., Rose D.R.: Insights into the mechanism of Drosophila melanogaster Golgi alpha-mannosidase II through the structural analysis of covalent reaction intermediates. J. Biol. Chem. 278, 48074–48083 (2003)CrossRef PubMed
    45.Einhoff W., Rudiger H.: The alpha-mannosidase from Canavalia Ensiformis seeds - chemical and kinetic properties and action on animal lymphocytes. Biol. Chem. H-S. 369, 165–169 (1988)
    46.Vandersall-Nairn A.S., Merkle R.K., O'Brien K., Oeltmann T.N., Moremen K.W.: Cloning, expression, purification, and characterization of the acid alpha-mannosidase from Trypanosoma cruzi. Glycobiology. 8, 1183–1194 (1998)CrossRef PubMed
    47.Cobucci-Ponzano B., Conte F., Strazzulli A., Capasso C., Fiume I., Pocsfalvi G., Rossi M., Moracci M.: The molecular characterization of a novel GH38 alpha-mannosidase from the crenarchaeon Sulfolobus solfataricus revealed its ability in de-mannosylating glycoproteins. Biochimie. 92, 1895–1907 (2010)CrossRef PubMed
    48.Hykollari A., Eckmair B., Voglmeir J., Jin C., Yan S., Vanbeselaere J., Razzazi-Fazeli E., Wilson I.B., Paschinger K.: More than just oligomannose: an N-glycomic comparison of Penicillium species. Mol. Cell Proteomics (2015). doi:10.​1074/​mcp.​M1115.​055061
  • 作者单位:Fang F. Liu (1)
    Anna Kulinich (1)
    Ya M. Du (1)
    Li Liu (1) (2)
    Josef Voglmeir (1)

    1. Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
    2. Qlyco Ltd., Nanjing, People’s Republic of China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Pathology
  • 出版者:Springer Netherlands
  • ISSN:1573-4986
文摘
Two putative α-mannosidase genes isolated from the rather unexplored soil bacterium Solitalea canadensis were cloned and biochemically characterised. Both recombinant enzymes were highly selective in releasing α-linked mannose but no other sugars. The α-mannosidases were designated Sca2/3Man2693 and Sca6Man4191, and showed the following biochemical properties: the temperature optimum for both enzymes was 37 °C, and their pH optima lay at 5.0 and 5.5, respectively. The activity of Sca2/3Man2693 was found to be dependent on Ca2+ ions, whereas Cu2+ and Zn2+ ions almost completely inhibited both α-mannosidases. Specificity screens with various substrates revealed that Sca2/3Man2693 could release both α1-2- and α1-3-linked mannose, whereas Sca6Man4191 only released α1-6-linked mannose. The combined enzymatic action of both recombinant α-mannosidases allowed the sequential degradation of high-mannose-type N-glycans. The facile expression and purification procedures in combination with strict substrate specificities make α-mannosidases from S. canadensis promising candidates for bioanalytical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700