用户名: 密码: 验证码:
Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue
详细信息    查看全文
  • 作者:Yoichi Imaizumi (1)
    Yohei Okada (1) (2)
    Wado Akamatsu (1)
    Masato Koike (3)
    Naoko Kuzumaki (1)
    Hideki Hayakawa (4)
    Tomoko Nihira (4)
    Tetsuro Kobayashi (5)
    Manabu Ohyama (5)
    Shigeto Sato (6)
    Masashi Takanashi (6)
    Manabu Funayama (6) (7)
    Akiyoshi Hirayama (8)
    Tomoyoshi Soga (8)
    Takako Hishiki (9)
    Makoto Suematsu (9)
    Takuya Yagi (10)
    Daisuke Ito (10)
    Arifumi Kosakai (10)
    Kozo Hayashi (11)
    Masanobu Shouji (11)
    Atsushi Nakanishi (11)
    Norihiro Suzuki (10)
    Yoshikuni Mizuno (12)
    Noboru Mizushima (13)
    Masayuki Amagai (5)
    Yasuo Uchiyama (3)
    Hideki Mochizuki (14) (4)
    Nobutaka Hattori (6) (7)
    Hideyuki Okano (1)
  • 关键词:Induced pluripotent stem cells ; Parkinson’s disease ; Parkin ; Oxidative stress ; Mitochondria ; α ; synuclein
  • 刊名:Molecular Brain
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:5
  • 期:1
  • 全文大小:1165KB
  • 参考文献:1. Farrer MJ: Genetics of Parkinson disease: paradigm shifts and future prospects. / Nature reviews 2006, 7:306-18.
    2. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. / Nature 1998, 392:605-08. CrossRef
    3. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T: Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. / Nat Genet 2000, 25:302-05. CrossRef
    4. Whitworth AJ, Pallanck LJ: The PINK1/Parkin pathway: a mitochondrial quality control system? / J Bioenerg Biomembr 2009, 41:499-03. CrossRef
    5. Youle RJ, Narendra DP: Mechanisms of mitophagy. / Nat Rev Mol Cell Biol 2011, 12:9-4. CrossRef
    6. Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, / et al.: Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. / J Biol Chem 2003, 278:43628-3635. CrossRef
    7. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J: Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. / J Biol Chem 2004, 279:18614-8622. CrossRef
    8. Perez FA, Palmiter RD: Parkin-deficient mice are not a robust model of parkinsonism. / Proc Natl Acad Sci USA 2005, 102:2174-179. CrossRef
    9. Sato S, Chiba T, Nishiyama S, Kakiuchi T, Tsukada H, Hatano T, Fukuda T, Yasoshima Y, Kai N, Kobayashi K, / et al.: Decline of striatal dopamine release in parkin-deficient mice shown by ex vivo autoradiography. / J Neurosci Res 2006, 84:1350-357. CrossRef
    10. Jiang H, Ren Y, Yuen EY, Zhong P, Ghaedi M, Hu Z, Azabdaftari G, Nakaso K, Yan Z, Feng J: Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. / Nat Commun 2012, 3:668. CrossRef
    11. Mattis VB, Svendsen CN: Induced pluripotent stem cells: a new revolution for clinical neurology? / Lancet Neurol 2011, 10:383-94. CrossRef
    12. Farrer M, Chan P, Chen R, Tan L, Lincoln S, Hernandez D, Forno L, Gwinn-Hardy K, Petrucelli L, Hussey J, / et al.: Lewy bodies and parkinsonism in families with parkin mutations. / Ann Neurol 2001, 50:293-00. CrossRef
    13. Savitt JM, Dawson VL, Dawson TM: Diagnosis and treatment of Parkinson disease: molecules to medicine. / J Clin Invest 2006, 116:1744-754. CrossRef
    14. Ohta S, Imaizumi Y, Okada Y, Akamatsu W, Kuwahara R, Ohyama M, Amagai M, Matsuzaki Y, Yamanaka S, Okano H, Kawakami Y: Generation of human melanocytes from induced pluripotent stem cells. / PLoS One 2011, 6:e16182. CrossRef
    15. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. / Cell 2007, 131:861-72. CrossRef
    16. Matigian N, Abrahamsen G, Sutharsan R, Cook AL, Vitale AM, Nouwens A, Bellette B, An J, Anderson M, Beckhouse AG, / et al.: Disease-specific, neurosphere-derived cells as models for brain disorders. / Dis Model Mech 2010, 3:785-98. CrossRef
    17. Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schule B, Dolmetsch RE, Langston W, / et al.: LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. / Cell Stem Cell 2011, 8:267-80. CrossRef
    18. Sies H: Glutathione and its role in cellular functions. / Free Radic Biol Med 1999, 27:916-21. CrossRef
    19. Williamson TP, Johnson DA, Johnson JA: Activation of the Nrf2-ARE pathway by siRNA knockdown of Keap1 reduces oxidative stress and provides partial protection from MPTP-mediated neurotoxicity. / Neurotoxicology 2012, 33:272-79. CrossRef
    20. Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, Chu CT, Jordan-Sciutto KL: Expression of Nrf2 in neurodegenerative diseases. / J Neuropathol Exp Neurol 2007, 66:75-5. CrossRef
    21. Tufekci KU, Civi Bayin E, Genc S, Genc K: The Nrf2/ARE Pathway: a promising target to counteract mitochondrial dysfunction in parkinson's disease. / Parkinsons Dis 2011, 2011:314082.
    22. Fukae J, Mizuno Y, Hattori N: Mitochondrial dysfunction in Parkinson's disease. / Mitochondrion 2007, 7:58-2. CrossRef
    23. Schapira AH: Mitochondrial dysfunction in neurodegenerative disorders. / Biochim Biophys Acta 1998, 1366:225-33. CrossRef
    24. Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ: Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. / Proc Natl Acad Sci USA 2003, 100:4078-083. CrossRef
    25. Mortiboys H, Thomas KJ, Koopman WJ, Klaffke S, Abou-Sleiman P, Olpin S, Wood NW, Willems PH, Smeitink JA, Cookson MR, Bandmann O: Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. / Ann Neurol 2008, 64:555-65. CrossRef
    26. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, / et al.: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. / J Cell Biol 2010, 189:211-21. CrossRef
    27. Narendra D, Tanaka A, Suen DF, Youle RJ: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. / J Cell Biol 2008, 183:795-03. CrossRef
    28. Tanaka A: Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network. / FEBS Lett 2010, 584:1386-392. CrossRef
    29. Yoshii SR, Kishi C, Ishihara N, Mizushima N: Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. / J Biol Chem 2011, 286:19630-9640. CrossRef
    30. Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D: Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. / J Neurosci 2011, 31:5970-976. CrossRef
    31. Shults CW: Lewy bodies. / Proc Natl Acad Sci USA 2006, 103:1661-668. CrossRef
    32. Pramstaller PP, Schlossmacher MG, Jacques TS, Scaravilli F, Eskelson C, Pepivani I, Hedrich K, Adel S, Gonzales-McNeal M, Hilker R, / et al.: Lewy body Parkinson's disease in a large pedigree with 77 Parkin mutation carriers. / Ann Neurol 2005, 58:411-22. CrossRef
    33. Sasaki S, Shirata A, Yamane K, Iwata M: Parkin-positive autosomal recessive juvenile Parkinsonism with alpha-synuclein-positive inclusions. / Neurology 2004, 63:678-82. CrossRef
    34. Schlossmacher MG, Frosch MP, Gai WP, Medina M, Sharma N, Forno L, Ochiishi T, Shimura H, Sharon R, Hattori N, / et al.: Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. / Am J Pathol 2002, 160:1655-667. CrossRef
    35. Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM: Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. / Nat Med 2001, 7:1144-150. CrossRef
    36. Petrucelli L, O'Farrell C, Lockhart PJ, Baptista M, Kehoe K, Vink L, Choi P, Wolozin B, Farrer M, Hardy J, Cookson MR: Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. / Neuron 2002, 36:1007-019. CrossRef
    37. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ: Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson's disease. / Science (New York, NY) 2001, 293:263-69. CrossRef
    38. Yagi T, Kosakai A, Ito D, Okada Y, Akamatsu W, Nihei Y, Nabetani A, Ishikawa F, Arai Y, Hirose N, / et al.: Establishment of induced pluripotent stem cells from centenarians for neurodegenerative disease research. / PLoS One 2012, 7:e41572. CrossRef
    39. Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ, / et al.: Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. / Proc Natl Acad Sci USA 2010, 107:15921-5926. CrossRef
    40. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ: Disease-Specific Induced Pluripotent Stem Cells. / Cell 2008.
    41. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, / et al.: Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. / Cell 2009, 136:964-77. CrossRef
    42. Devine MJ, Ryten M, Vodicka P, Thomson AJ, Burdon T, Houlden H, Cavaleri F, Nagano M, Drummond NJ, Taanman JW, / et al.: Parkinson's disease induced pluripotent stem cells with triplication of the alpha-synuclein locus. / Nat Commun 2011, 2:440. CrossRef
    43. Suemori H, Yasuchika K, Hasegawa K, Fujioka T, Tsuneyoshi N, Nakatsuji N: Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by enzymatic bulk passage. / Biochem Biophys Res Commun 2006, 345:926-32. CrossRef
    44. Okada Y, Matsumoto A, Shimazaki T, Enoki R, Koizumi A, Ishii S, Itoyama Y, Sobue G, Okano H: Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell-derived neural stem/progenitor cells. / Stem cells (Dayton, Ohio) 2008, 26:3086-098. CrossRef
    45. Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, Kominami E, Gotow T, Peters C, von Figura K, Mizushima N, / et al.: Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). / Am J Pathol 2005, 167:1713-728. CrossRef
    46. Mitsui J, Takahashi Y, Goto J, Tomiyama H, Ishikawa S, Yoshino H, Minami N, Smith DI, Lesage S, Aburatani H, / et al.: Mechanisms of genomic instabilities underlying two common fragile-site-associated loci, PARK2 and DMD, in germ cell and cancer cell lines. / Am J Hum Genet 2010, 87:75-9. CrossRef
  • 作者单位:Yoichi Imaizumi (1)
    Yohei Okada (1) (2)
    Wado Akamatsu (1)
    Masato Koike (3)
    Naoko Kuzumaki (1)
    Hideki Hayakawa (4)
    Tomoko Nihira (4)
    Tetsuro Kobayashi (5)
    Manabu Ohyama (5)
    Shigeto Sato (6)
    Masashi Takanashi (6)
    Manabu Funayama (6) (7)
    Akiyoshi Hirayama (8)
    Tomoyoshi Soga (8)
    Takako Hishiki (9)
    Makoto Suematsu (9)
    Takuya Yagi (10)
    Daisuke Ito (10)
    Arifumi Kosakai (10)
    Kozo Hayashi (11)
    Masanobu Shouji (11)
    Atsushi Nakanishi (11)
    Norihiro Suzuki (10)
    Yoshikuni Mizuno (12)
    Noboru Mizushima (13)
    Masayuki Amagai (5)
    Yasuo Uchiyama (3)
    Hideki Mochizuki (14) (4)
    Nobutaka Hattori (6) (7)
    Hideyuki Okano (1)

    1. Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
    2. Kanrinmaru Project, Keio University School of Medicine, Tokyo, Japan
    3. Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
    4. Department of Neurology, Kitasato University School of Medicine, Kanagawa, Japan
    5. Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
    6. Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
    7. Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
    8. Institute for Advanced Biosciences, Keio University, Yamagata, Japan
    9. Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
    10. Department of Neurology, Keio University School of Medicine, Tokyo, Japan
    11. Advanced Science Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
    12. Department of Neuro-Regenerative Medicine, Kitasato University School of Medicine, Kanagawa, Japan
    13. Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
    14. Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
  • ISSN:1756-6606
文摘
Background Parkinson’s disease (PD) is a neurodegenerative disease characterized by selective degeneration of dopaminergic neurons in the substantia nigra (SN). The familial form of PD, PARK2, is caused by mutations in the parkin gene. parkin-knockout mouse models show some abnormalities, but they do not fully recapitulate the pathophysiology of human PARK2. Results Here, we generated induced pluripotent stem cells (iPSCs) from two PARK2 patients. PARK2 iPSC-derived neurons showed increased oxidative stress and enhanced activity of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. iPSC-derived neurons, but not fibroblasts or iPSCs, exhibited abnormal mitochondrial morphology and impaired mitochondrial homeostasis. Although PARK2 patients rarely exhibit Lewy body (LB) formation with an accumulation of α-synuclein, α-synuclein accumulation was observed in the postmortem brain of one of the donor patients. This accumulation was also seen in the iPSC-derived neurons in the same patient. Conclusions Thus, pathogenic changes in the brain of a PARK2 patient were recapitulated using iPSC technology. These novel findings reveal mechanistic insights into the onset of PARK2 and identify novel targets for drug screening and potential modified therapies for PD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700