用户名: 密码: 验证码:
Linear and nonlinear viscoelasticity of polymer/silica nanocomposites: an understanding from modulus decomposition
详细信息    查看全文
  • 作者:Jun Wang ; Ying Guo ; Wei Yu ; Chixing Zhou ; Paul Steeman
  • 关键词:Polymer nanocomposites ; Percolation ; Rheology
  • 刊名:Rheologica Acta
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:55
  • 期:1
  • 页码:37-50
  • 全文大小:1,389 KB
  • 参考文献:Abbasi S, Carreau PJ, Derdouri A, Moan M (2009) Rheological properties and percolation in suspensions of multiwalled carbon nanotubes in polycarbonate. Rheol Acta 48:943–959CrossRef
    Ahirwal D, Palza H, Schlatter G, Wilhelm M (2014) New way to characterize the percolation threshold of polyethylene and carbon nanotube polymer composites using Fourier transform (FT) rheology. Korea-Australia Rheol J 26:319–326CrossRef
    Akcora P, Kumar SK (2010) Segmental dynamics in PMMA-grafted nanoparticle composites. Macromolecules 3:1003–1010CrossRef
    Bailly M, Kontopoulou M, Mabrouk KE (2010) Effect of polymer/filler interactions on the structure and rheological properties of ethylene-octene copolymer/nanosilica composites. Polymer 51:5506–5515CrossRef
    Baldi F, Franceschini A, Bignotti F, Tieghi G, Riccò T (2009) Rheological behaviour of nano-composites based on polyamide 6 under shear and elongational flow at high strain rates. Rheol Acta 48:73–88CrossRef
    Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117CrossRef
    Batchelor GK, Green JT (1972) The determination of the bulk stress in a suspension of spherical particles to order c2. J Fluid Mech 56:401–427CrossRef
    Biswas N, Datta A (2012) Polymer entanglement—a barrier to nanoparticles aggregation. Chem Phys Lett 531:177–182CrossRef
    Capuano G, Filippone G, Romeo G, Acierno D (2012) Universal features of the melt elasticity of interacting polymer nanocomposites. Langmuir 28:5458–5463CrossRef
    Carrot C, Majesté JC, Olalla B, Fulchiron R (2010) On the use of the model proposed by Leonov for the explanation of a secondary plateau of the loss modulus in heterogeneous polymer–filler systems with agglomerates. Rheol Acta 49:513–527CrossRef
    Casalini R, Bogoslovov R, Qadri SB, Roland CM (2012) Nanofiller reinforcement of elastomeric polyurea. Polymer 53:1282–1287CrossRef
    Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:2183–2196CrossRef
    Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J Rheol 31:683–697CrossRef
    Chambon F, Petrovic ZS, MacKnight WJ, Winter HH (1986) Rheology of model polyurethanes at the gel point. Macromolecules 19:2146–2149CrossRef
    Chen X, Gug JI, Sobkowicz MJ (2014) Role of polymer/filler interactions in the linear viscoelasticity of poly(butylene succinate)/fumed silica nanocomposite. Compos Sci Technol 95:8–15CrossRef
    Choong GYH, De Focatiis DSA, Hassell DG (2013) Viscoelastic melt rheology and time-temperature superposition of polycarbonate-multi-walled carbon nanotube nanocomposites. Rheol Acta 52:801–814CrossRef
    Coppola S, Acierno S, Grizzuti N, Vlassopoulos D (2006) Viscoelastic behavior of semicrystalline thermoplastic polymers during the early stages of crystallization. Macromolecules 39:1507–1514CrossRef
    Domurath J, Saphiannikova M, Ausias G, Heinrich G (2012) Modelling of stress and strain amplification effects in filled polymer melts. J Non-Newtonian Fluid Mech 171–172:8–16CrossRef
    Eslami H, Grmela M, Bousmina M (2010) Linear and nonlinear rheology of polymer/layered silicate nanocomposites. J Rheol 54:539–562CrossRef
    Filippone G, Salzano de Luna M (2012) Unifying approach for the linear viscoelasticity of polymer nanocomposites. Macromolecules 45:8853–8860CrossRef
    Filippone G, Romeo G, Acierno D (2010) Viscoelasticity and structure of polystyrene/fumed silica nanocomposites: filler network and hydrodynamic contributions. Langmuir 26:2714–2720CrossRef
    Gao JP, Huang CW, Wang N, Yu W, Zhou CX (2012) Phase separation of poly (methyl methacrylate)/poly (styrene-co-acrylonitrile) blends in the presence of silica nanoparticles. Polymer 53:1772–1782CrossRef
    Gleissle W, Hochstein B (2003) Validity of the Cox–Merz rule for concentrated suspensions. J Rheol 47:897–910CrossRef
    Hassanabadi HM, Rodrigue D (2012) Relationships between linear and nonlinear shear response of polymer nano-composites. Rheol Acta 51:991–1005CrossRef
    Hassanabadi HM, Wilhelm M, Rodrigue D (2014) A rheological criterion to determine the percolation threshold in polymer nano-composites. Rheol Acta 53:869–882CrossRef
    He P, Chen B, Yu W, Zhou CX (2015) Liquid–solid transition in mesophase separated olefin multiblock copolymers during crystallization. RSC Adv 5:40607–40619CrossRef
    Horst RH, Winter HH (2000) Stable critical gels of a crystallizing copolymer of ethene and 1-butene. Macromolecules 33:130–136CrossRef
    Huang CW, Gao JP, Yu W, Zhou CX (2012) Phase separation of poly(methyl methacrylate)/poly(styrene-coacrylonitrile) blends with controlled distribution of silica nanoparticles. Macromolecules 45:8420–8429CrossRef
    Izuka A, Winter HH, Hashimoto T (1992) Molecular weight dependence of viscoelasticity of polycaprolactone critical gels. Macromolecules 25:2422–2428CrossRef
    Kelarakis A, Yoon K, Somani RH, Chen XM, Hsiao BS, Chu BJ (2005) Rheological study of carbon nanofiber induced physical gelation in polyolefin nanocomposite melt. Polymer 46:11591–11599CrossRef
    Krieger IM, Dougherty TJ (1959) A mechanism for non-newtonian flow in suspensions of rigid spheres. J Rheol 3:137–152CrossRef
    Lim HT, Ahn KH, Lee SJ, Hong JS (2012) Design of new HDPE/silica nanocomposite and its enhanced melt strength. Rheol Acta 51:143–150CrossRef
    Lim HT, Ahn KH, Hong JS, Hyun K (2013) Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow. J Rheol 57:767–789CrossRef
    Liu JY, Yu W, Zhou CX (2011) Polymer chain topological map as determined by linear viscoelasticity. J Rheol 55:545–570CrossRef
    Macosko CW (1994) Rheology: principles, measurements, and applications. VCH, New York
    Mongruel A, Cartault M (2006) Nonlinear rheology of styrene-butadiene rubber filled with carbon-black or silica particles. J Rheol 50:115–135CrossRef
    Mun SC, Kim M, Prakashan K, Jung HJ, Son Y, Park OO (2014) A new approach to determine rheological percolation of carbon nanotubes in microstructured polymer matrices. Carbon 67:64–71CrossRef
    Osman MA, Atallah A (2005) Interparticle and particle-matrix interactions in polyethylene reinforcement and viscoelasticity. Polymer 46:9476–9488CrossRef
    Pogodina NV, Winter HH (1998) Polypropylene crystallization as a physical gelation process. Macromolecules 31:8164–8172CrossRef
    Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863–8870CrossRef
    Prasad V, Trappe V, Dinsmore AD, Segre PN, Cipelletti L, Weitz DA (2003) Universal features of the fluid to solid transition for attractive colloidal particles. Faraday Discuss 123:1–12CrossRef
    Raos G, Moreno M, Elli S (2006) Computational experiments on filled rubber viscoelasticity: what is the role of particle-particle interactions? Macromolecules 39:6744–6751CrossRef
    Song YH, Zheng Q, Cao Q (2009) On time-temperature-concentration superposition principle for dynamic rheology of carbon black filled polymers. J Rheol 53:1379–1388CrossRef
    Trappe V, Weitz DA (2000) Scaling of the viscoelasticity of weakly attractive particles. Phys Rev Lett 85:449–452CrossRef
    Triebel C, Münstedt H (2011) Temperature dependence of rheological properties of poly(methyl methacrylate) filled with silica nanoparticles. Polymer 52:1596–1602CrossRef
    Tung CYM, Dynes PJ (1982) Relationship between viscoelastic properties and gelation in thermosetting systems. J Appl Polym Sci 27:569–574CrossRef
    Vermant J, Ceccia S, Dolgovskij MK, Maffettone PL, Macosko CW (2007) Quantifying dispersion of layered nanocomposites via melt rheology. J Rheol 51:429–450CrossRef
    Wang P, Liu JY, Yu W, Zhou CX (2011) Dynamic rheological properties of wood polymer composites: from linear to nonlinear behaviors. Polym Bull 66:683–701CrossRef
    Winter HH, Mours M (1997) Rheology of polymers near liquid–solid transitions. Adv Polym Sci 134:165–234CrossRef
    Yu W, Wang P, Zhou CX (2009) General stress decomposition in nonlinear oscillatory shear flow. J Rheol 53:215–238CrossRef
    Yu W, Du Y, Zhou CX (2013) A geometric average interpretation on the nonlinear oscillatory shear. J Rheol 54:1147–1175CrossRef
    Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442CrossRef
    Zohrevand A, Ajji A, Mighri F (2014) Relationship between rheological and electrical percolation in a polymer nanocomposite with semiconductor inclusions. Rheol Acta 53:235–254CrossRef
  • 作者单位:Jun Wang (1)
    Ying Guo (2)
    Wei Yu (1)
    Chixing Zhou (1)
    Paul Steeman (3)

    1. Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
    2. Performance Materials Research Center, DSM (China) Limited, Shanghai, 201203, People’s Republic of China
    3. Materials Science Center, DSM Research, 6160, MD, Geleen, The Netherlands
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Polymer Sciences
    Mechanical Engineering
    Soft Matter and Complex Fluids
    Food Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-1528
文摘
We investigate the linear and nonlinear viscoelasticity of a model polymer nanocomposite of fumed silica nanoparticles in poly-(ethylene-co-α-butene) (PEB). Above a critical filler fraction, a space-filling network builds up as a result of cluster agglomeration and causes the material to change from liquid-like to solid-like states. Using the Winter-Chambon criterion, the percolation threshold from the measured dynamic moduli is found to depend strongly on the matrix viscoelasticity even when the particle dispersion is identical. Such phenomenon comes from the implicit assumption in the method that the contribution from particles (or particle agglomerates) should dominate the dynamic moduli, which is usually inapplicable when polymer has a high viscosity (or elasticity). A new method is suggested to decompose the moduli of composites into the hydrodynamic part and the part from particle agglomerates by taking into consideration the different effects of particles on the strain rate and stress. The two portions are shown to depend on oscillatory frequency, which are adopted to extrapolate the dynamic moduli to lower frequency. The percolation threshold from these extrapolated data becomes independent of the matrix viscoelasticity. Furthermore, it is found that the appearance of nonlinear behavior in oscillatory shear is related to the portion of particle agglomerates in storage modulus and the strain rate is the key factor to destroy the structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700