用户名: 密码: 验证码:
Mercury-induced hepatotoxicity in zebrafish: in vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation
详细信息    查看全文
  • 作者:Choong Yong Ung (1)
    Siew Hong Lam (1)
    Mya Myintzu Hlaing (1)
    Cecilia Lanny Winata (1)
    Svetlana Korzh (1)
    Sinnakaruppan Mathavan (2)
    Zhiyuan Gong (1)
  • 刊名:BMC Genomics
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:11
  • 期:1
  • 全文大小:1891KB
  • 参考文献:1. Li P, Feng XB, Qiu GL, Shang LH, Li ZG: Mercury pollution in Asia: A review of the contaminated sites. / J Hazard Mater 2009, 168: 591鈥?01. CrossRef
    2. Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S: Global anthropogenic mercury emission inventory for 2000. / Atmos Environ 2006, 40: 4048鈥?063. CrossRef
    3. Kudo A, Fujikawa Y, Miyahara S, Zheng J, Takigami H, Sugahara M, Muramatsu T: Lessons from minamata mercury pollution. Japan-After a continuous 22 years of observation. / Water Sci Technol 1998, 38: 187鈥?93.
    4. Pfeiffer WC, Lacerda LD: Mercury inputs in the Amazon region. / Environ Technol Lett 1988, 9: 325鈥?30. CrossRef
    5. Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, al-Rawi NY, Tikriti S, Dahahir HI, Clarkson TW, Smith JC, Doherty RA: Methylmercury poisoning in Iraq. / Science 1973, 181: 230鈥?41. CrossRef
    6. Trasande L, Landrigan PJ, Schechter C: Public health and economic consequences of methyl mercury toxicity to the developing brain. / Environ Health Persp 2005, 113: 590鈥?96. CrossRef
    7. Hylande LD, Goodsite ME: Environmental costs of mercury pollution. / SciTotal Environ 2006, 368: 352鈥?70. CrossRef
    8. Agency for Toxic Substances and Disease Registry (ATSDR): / Toxicological Profile for Mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service; 1999.
    9. EPA US: / Mercury Report to Congress Office of Air Quality and Standards. U.S. Environmental Protection Agency, Washington, DC; 1997.
    10. EPA US: / Water Quality Criterion for the Protection of Human Health: Methyl Mercury. U.S. Environmental Protection Agency, Washington, DC; 2001.
    11. Clarkson TW: The Three Modern Faces of Mercury. / Environ Health Perspect 2002, 110 (suppl 1) : 11鈥?3. CrossRef
    12. Dutczak WJ, Ballatori N: Transport of the glutathionemethylmercury complex across liver canalicular membranes on reduced glutathione carriers. / J Biol Chem 1994, 269: 9746鈥?751.
    13. Castoldi AF, Coccini T, Ceccatelli S, Manzo L: Neurotoxicity and molecular effects of methylmercury. / Review Brain Res Bull 2001, 55: 197鈥?03. CrossRef
    14. Zalups RK: Molecular interactions with mercury in the kidney. / Pharmacol Rev 2000, 52: 113鈥?43.
    15. Suter L, Babiss LE, Wheeldon EB: Toxicogenomics in predictive toxicology in drug development. / Chem Biol 2004, 11: 161鈥?71.
    16. Grunwald DJ, Eisen JS: Headwaters of the zebrafish-emergence of a new model vertebrate. / Nat Rev Genet 2002, 3: 717鈥?23. CrossRef
    17. Shin JT, Fishman MC: From zebrafish to human: modular medical models. / Annu Rev Genomics Human Genet 2002, 3: 311鈥?40. CrossRef
    18. Spitsbergen JM, Kent ML: The state of the art of the zebrafish model for toxicology and toxicologic pathology research-advantages and current limitation. / Toxicol Pathol 2003, 31: 62鈥?7.
    19. Carvan MJ, Dalton TP, Stuart GW, Nebert DW: Transgenic zebrafish as sentinels for aquatic pollution. / Acad Sci 2000, 919: 133鈥?47. CrossRef
    20. Carvan MJ, Solis WA, Gedamu L, Nebert DW: Activation of transcription factors in zebrafish cell cultures by environmental pollutants. / Arch Biochem Biophys 2000, 376: 320鈥?27. CrossRef
    21. Hill AJ, Teraoka H, Heideman W, Peterson RE: Zebrafish as a model vertebrate for investigating chemical toxicity. / Toxicol Sci 2005, 86: 6鈥?9. CrossRef
    22. Lam SH, Wu YL, Vega VB, Miller LD, Spitsbergen J, Tong Y, Zhan H, Govindarajan KR, Lee S, Mathavan S, Murthy KR, Buhler DR, Liu ET, Gong Z: Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. / Nat Biotechnol 2006, 24: 73鈥?5. CrossRef
    23. Lam SH, Winata CL, Tong Y, Korzh S, Lim WS, Korzh V, Spitsbergen J, Mathavan S, Miller LD, Liu ET, Gong Z: Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver. / Physiol Genomics 2006, 27: 351鈥?61. CrossRef
    24. Lam SH, Mathavan S, Tong Y, Li H, Karuturi RK, Wu Y, Vega VB, Liu ET, Gong Z: Zebrafish whole-adult-organism chemogenomics for large-scale predictive and discovery chemical biology. / PLoS Genet 2008, 4: e1000121. CrossRef
    25. Gonzalez P, Dominique Y, Massabuau JC, Boudou A, Bourdineaud JP: Comparative effects of dietary methylmercury on gene expression in liver, skeletal muscle, and brain of the zebrafish (Danio rerio). / Environ Sci Technol 2005, 39: 3972鈥?980. CrossRef
    26. Monteiro DA, Rantin FT, Kalinin AL: Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinx茫, Brycon amazonicus (Spix and Agassiz, 1829). / Ecotoxicology 2010, 19: 105鈥?23. CrossRef
    27. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. / Proc Natl Acad Sci USA 2005, 102: 15545鈥?5550. CrossRef
    28. Paules R: Phenotypic anchoring: linking cause and effect. / Environ Health Perspect 2003, 111: A338-A339. CrossRef
    29. Moggs JG, Tinwell H, Spurway T, Chang HS, Pate I, Lim FL, Moore DJ, Soames A, Stuckey R, Currie R, Zhu T, Kimber I, Ashby J, Orphanides G: Phenotypic anchoring of gene expression changes during estrogen-induced uterine growth. / Environ Health Perspect 2004, 112: 1589鈥?606. CrossRef
    30. Araragi S, Kondoh M, Kawase M, Saito S, Higashimoto M, Sato M: Mercuric chloride induces apoptosis via a mitochondrial-dependent pathway in human leukemia cells. / Toxicology 2003, 184: 1鈥?. CrossRef
    31. Rangwala SM, Lazar MA: Transcriptional control of adipogenesis. / Annu Rev Nutr 2000, 20: 535鈥?59. CrossRef
    32. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM: Transcriptional regulation of adipogenesis. / Genes Dev 2000, 14: 1293鈥?307.
    33. Rao MV, Sharma PS: Protective effect of vitamin E against mercuric chloride reproductive toxicity in male mice. / Reprod Toxicol 2001, 15: 705鈥?12. CrossRef
    34. Anh LL, Loi VD, Mon PG, Phu NL, Ngoc DM, Tuy P: Determination of lead and mercury in clinical samples during work and accidental exposure in Vietnam. / Anal Sci 2001, 17: a37-a39. CrossRef
    35. Butler WJ, Houseman J, Seddon L, McMullen E, Tofflemire K, Mills C, Corriveau A, Weber JP, LeBlanc A, Walker M, Donaldson SG, Van Oostdam J: Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada. / Environ Res 2006, 100: 295鈥?18. CrossRef
    36. Counter SA, Buchanan LH: Mercury exposure in children: a review. / Toxicol Appl Pharmacol 2004, 198: 209鈥?30. CrossRef
    37. Yoon S, Han SS, Rana SV: Molecular markers of heavy metal toxicity--a new paradigm for health risk assessment. / J Environ Biol 2008, 29: 1鈥?4.
    38. Kroemer G, Reed JC: Mitochondrial control of cell death. / Nat Med 2000, 6: 513鈥?19. CrossRef
    39. Lockshin RA, Zakeri Z: Programmed cell death and apoptosis: origins of the theory. / Nat Rev Mol Cell Biol 2001, 2: 545鈥?50. CrossRef
    40. Saraste A, Pulkki K: Morphologic and biochemical hallmarks of apoptosis. / Cardiovasc Res 2000, 45: 528鈥?37. CrossRef
    41. Arrigo AP: Gene expression and the thiol redox state.Free Radic. / Boil Med 1999, 27: 936鈥?44.
    42. Sen CK: Cellular thiols and redox-regulated signal transduction. / Curr Top Cell 2000, 36: 1鈥?0. CrossRef
    43. Tan SW, Meiller JC, Mahaffey KR: The endocrine effects of mercury in humans and wildlife. / Crit Rev Toxicol 2009, 39: 228鈥?69. CrossRef
    44. Galanis A, Karapetsas A, Sandaltzopoulos R: Metal-induced carcinogenesis, oxidative stress and hypoxia signaling. / Mutat Res 2009, 674: 31鈥?5.
    45. Beurel E, Jope RS: The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. / Prog Neurobiol 2006, 79: 173鈥?89. CrossRef
    46. Cohen P, Frame S: The renaissance of GSK3. / Nat Rev Mol Cell Biol 2001, 2: 769鈥?76. CrossRef
    47. Jope RS, Johnson GV: The glamour and gloom of glycogen synthase kinase-3. / Trends Biochem Sci 2004, 29: 95鈥?02. CrossRef
    48. Mathavan S, Lee SG, Mak A, Miller LD, Murthy KR, Govindarajan KR, Tong Y, Wu YL, Lam SH, Yang H, Ruan Y, Korzh V, Gong Z, Liu ET, Lufkin T: Transcriptome analysis of zebrafish embryogenesis using microarrays. / PLoS Genet 2005, 1: 260鈥?76. CrossRef
    49. Lam SH, Mathavan S, Gong Z: Zebrafish spotted-microarray for genome-wide expression profiling experiments. Part I: array printing and hybridization. / Methods Mol Biol 2009, 546: 175鈥?95. CrossRef
    50. Lam SH, Krishna Murthy Karuturi R, Gong Z: Zebrafish spotted-microarray for genome-wide expression profiling experiments: data acquisition and analysis. / Methods Mol Biol 2009, 546: 197鈥?26. CrossRef
  • 作者单位:Choong Yong Ung (1)
    Siew Hong Lam (1)
    Mya Myintzu Hlaing (1)
    Cecilia Lanny Winata (1)
    Svetlana Korzh (1)
    Sinnakaruppan Mathavan (2)
    Zhiyuan Gong (1)

    1. Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
    2. Genome Institute of Singapore, Agency for Science Technology and Research, Genome, 60 Biopolis Street, 138672, Singapore
文摘
Background Mercury is a prominent environmental contaminant that causes detrimental effects to human health. Although the liver has been known to be a main target organ, there is limited information on in vivo molecular mechanism of mercury-induced toxicity in the liver. By using transcriptome analysis, phenotypic anchoring and validation of targeted gene expression in zebrafish, mercury-induced hepatotoxicity was investigated and a number of perturbed cellular processes were identified and compared with those captured in the in vitro human cell line studies. Results Hepato-transcriptome analysis of mercury-exposed zebrafish revealed that the earliest deregulated genes were associated with electron transport chain, mitochondrial fatty acid beta-oxidation, nuclear receptor signaling and apoptotic pathway, followed by complement system and proteasome pathway, and thereafter DNA damage, hypoxia, Wnt signaling, fatty acid synthesis, gluconeogenesis, cell cycle and motility. Comparative meta-analysis of microarray data between zebrafish liver and human HepG2 cells exposed to mercury identified some common toxicological effects of mercury-induced hepatotoxicity in both models. Histological analyses of liver from mercury-exposed fish revealed morphological changes of liver parenchyma, decreased nucleated cell count, increased lipid vesicles, glycogen and apoptotic bodies, thus providing phenotypic evidence for anchoring of the transcriptome analysis. Validation of targeted gene expression confirmed deregulated gene-pathways from enrichment analysis. Some of these genes responding to low concentrations of mercury may serve as toxicogenomic-based markers for detection and health risk assessment of environmental mercury contaminations. Conclusion Mercury-induced hepatotoxicity was triggered by oxidative stresses, intrinsic apoptotic pathway, deregulation of nuclear receptor and kinase activities including Gsk3 that deregulates Wnt signaling pathway, gluconeogenesis, and adipogenesis, leading to mitochondrial dysfunction, endocrine disruption and metabolic disorders. This study provides important mechanistic insights into mercury-induced liver toxicity in a whole-animal physiology context, which will help in understanding the syndromes caused by mercury poisoning. The molecular conservation of mercury-induced hepatotoxicity between zebrafish and human cell line reveals the feasibility of using zebrafish to model molecular toxicity in human for toxicant risk assessments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700