用户名: 密码: 验证码:
Boundary Harnack Principle and Gradient Estimates for Fractional Laplacian Perturbed by Non-local Operators
详细信息    查看全文
文摘
Suppose d ≥ 2 and 0 < β < α < 2. We consider the non-local operator \(\mathcal {L}^{b}={\Delta }^{\alpha /2}+\mathcal {S}^{b}\), where$$\mathcal{S}^{b}f(x):=\lim_{\varepsilon\to 0}\mathcal{A}(d,-\beta){\int}_{|z|>\varepsilon}\left( f(x+z)-f(x)\right) \frac{b(x,z)}{|z|^{d+\beta}}\,dy. $$Here b(x, z) is a bounded measurable function on \(\mathbb {R}^{d}\times \mathbb {R}^{d}\) that is symmetric in z, and \(\mathcal {A}(d,-\beta )\) is a normalizing constant so that when b(x, z)≡1, \(\mathcal {S}^{b}\) becomes the fractional Laplacian Δβ/2:=−(−Δ)β/2. In other words,$$\mathcal{L}^{b}f(x):=\lim_{\varepsilon\to 0}\mathcal{A}(d,-\beta){\int}_{|z|>\varepsilon}\left( f(x+z)-f(x)\right) j^{b}(x, z)\,dz, $$ where \(j^{b}(x, z):= \mathcal {A}(d,-\alpha ) |z|^{-(d+\alpha )} + \mathcal {A}(d,-\beta ) b(x, z)|z|^{-(d+\beta )}\). It is recently established in Chen and Wang [11] that, when jb(x, z)≥0 on \(\mathbb {R}^{d}\times \mathbb {R}^{d}\), there is a conservative Feller process Xb having \(\mathcal {L}^{b}\) as its infinitesimal generator. In this paper we establish, under certain conditions on b, a uniform boundary Harnack principle for harmonic functions of Xb (or equivalently, of \(\mathcal {L}^{b}\)) in any κ-fat open set. We further establish uniform gradient estimates for non-negative harmonic functions of Xb in open sets.KeywordsHarmonic functionBoundary Harnack principleGradient estimateNon-local operatorGreen functionPoisson kernelMathematics Subject Classification (2010)Primary 60J45Secondary 31B0531B25References1.Blumenthal, R.A., Getoor, R.K., Ray, D.B.: On the distribution of first hits for the symmetric stable processes. Trans. Amer. Math. Soc. 99, 540–554 (1961)MathSciNetMATHGoogle Scholar2.Bogdan, K.: The boundary Harnack principle for the fractional Laplacian. Studia Math. 123, 43–80 (1997)MathSciNetMATHGoogle Scholar3.Bogdan, K., Kumagai, T., Kwasnicki, M.: Boundary Harnack inequality for Markov processes with jumps. Trans. Amer. Math. Soc. 367, 477–517 (2015)MathSciNetMATHCrossRefGoogle Scholar4.Bogdan, K., Kulczycki, T., Nowak, A.: Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes. Ill. J. Math. 46, 541–556 (2002)MathSciNetMATHGoogle Scholar5.Bogdan, K., Sydor, S.: On Nonlocal Perturbations of Integral Kernels. Semigroups of Operators-Theory and Applications. Springer International Publishing, 27–42 (2015)6.Chen, Z.-Q.: Multidimensional symmetric stable processes. Korean J. Comput. Appl. Math. 6, 227–266 (1999)MathSciNetMATHGoogle Scholar7.Chen, Z.-Q., Kim, P., Song, R.: Dirichlet heat kernel estimates for Δα/2+Δβ/2. Ill. J. Math. 54(Special issue in honor of D. Burkholder), 1357–1392 (2010)MathSciNetGoogle Scholar8.Chen, Z.-Q., Kim, P., Song, R.: Green function estimates for relativistic stable processes in half-space-like open sets. Stochasticd Process Appl. 121, 1148–1172 (2011)MathSciNetMATHCrossRefGoogle Scholar9.Chen, Z.-Q., Kim, P., Song, R.: Stability of Dirichlet heat kernel estimates for non-local operators under Feynman-Kac perturbation. Trans. Amer. Math. Soc. 367, 5237–5270 (2015)MathSciNetMATHCrossRefGoogle Scholar10.Chen, Z.-Q., Song, R.: Drift transforms and Green function estimates for discontinuous processes. J. Func. Anal. 201, 262–281 (2003)MathSciNetMATHCrossRefGoogle Scholar11.Chen, Z.-Q., Wang, J.-M.: Perturbation by non-local operators. arXiv:1312.7594 [math.PR]12.Chen, Z.-Q., Yang, T.: Dirichlet heat kernel estimates for fractional Laplacian under non-local perturbation. arXiv:1503.05302 [math.PR]13.Cranston, M.: Gradient estimates on manifolds using coupling. J. Funct. Anal. 99, 110–124 (1991)MathSciNetMATHCrossRefGoogle Scholar14.Grzywny, T., Ryznar, M.: Estimates of Green functions for some perturbations of fractional Laplacian. Illinois J. Math. 51(4), 1409–1438 (2007)MathSciNetMATHGoogle Scholar15.Kim, P., Lee, Y.-R.: Generalized 3G theorem and application to relativistic stable process on non-smooth open sets. J. Funct. Anal. 246(1), 113–143 (2007)MathSciNetMATHCrossRefGoogle Scholar16.Kim, P., Song, R., Vondracek, Z.: Uniform boundary Harnack principle for rotationally symmetric Lévy processes in general open sets. Science China Math. 55, 2317–2333 (2012)MathSciNetMATHCrossRefGoogle Scholar17.Kim, P., Song, R., Vondraek, Z.: Martin Boundary for Some Symmetric Lévy Processes. Festschrift Masatoshi Fukushima, In Honor of Masatoshi Fukushima’s Sanju. Interdisciplinary Mathematical Sciences, vol. 17, pp 307–342. World Sciences Publication, Hackensack (2015)CrossRefGoogle Scholar18.Kulczycki, T.: Gradient esitmates of q-harmonic functions of fractional Schrödinger operator. Potential Anal. 39, 29–98 (2013)MathSciNetCrossRefGoogle Scholar19.Kulczycki, T., Ryznar, M.: Gradient estimates of harmonic functions and transition densities for Lévy processes. Trans. Amer. Math. Soc. 368, 281–318 (2016)MathSciNetMATHCrossRefGoogle Scholar20.Schilling, R., Sztonyk, P., Wang, J.: Coupling property and gradient estimates of Lévy processes via the symbol. Bernoulli 18(4), 1128–1149 (2012)MathSciNetMATHCrossRefGoogle Scholar21.Yang, T.: Population growth in branching Lévy processes and Green function estimates for Δα/2 + bΔβ/2 (in Chinese). Ph.D thesis, Peking University (2012)Copyright information© Springer Science+Business Media Dordrecht 2016Authors and AffiliationsZhen-Qing Chen1Yan-Xia Ren2Ting Yang34Email author1.Department of MathematicsUniversity of WashingtonSeattleUSA2.LMAM School of Mathematical Sciences and Center for Statistical SciencePeking UniversityBeijingChina3.School of Mathematics and StatisticsBeijing Institute of TechnologyBeijingChina4.Beijing Key Laboratory on MCAACIBeijingChina About this article CrossMark Print ISSN 0926-2601 Online ISSN 1572-929X Publisher Name Springer Netherlands About this journal Reprints and Permissions Article actions function trackAddToCart() { var buyBoxPixel = new webtrekkV3({ trackDomain: "springergmbh01.webtrekk.net", trackId: "196033507532344", domain: "link.springer.com", contentId: "springer_com.buybox", product: "10.1007/s11118-016-9554-1_Boundary Harnack Principle and Gra", productStatus: "add", productCategory : { 1 : "ppv" }, customEcommerceParameter : { 9 : "link.springer.com" } }); buyBoxPixel.sendinfo(); } function trackSubscription() { var subscription = new webtrekkV3({ trackDomain: "springergmbh01.webtrekk.net", trackId: "196033507532344", domain: "link.springer.com", contentId: "springer_com.buybox" }); subscription.sendinfo({linkId: "inst. subscription info"}); } window.addEventListener("load", function(event) { var viewPage = new webtrekkV3({ trackDomain: "springergmbh01.webtrekk.net", trackId: "196033507532344", domain: "link.springer.com", contentId: "SL-article", product: "10.1007/s11118-016-9554-1_Boundary Harnack Principle and Gra", productStatus: "view", productCategory : { 1 : "ppv" }, customEcommerceParameter : { 9 : "link.springer.com" } }); viewPage.sendinfo(); }); Log in to check your access to this article Buy (PDF)EUR 34,95 Unlimited access to full article Instant download (PDF) Price includes local sales tax if applicable Find out about institutional subscriptions Export citation .RIS Papers Reference Manager RefWorks Zotero .ENW EndNote .BIB BibTeX JabRef Mendeley Share article Email Facebook Twitter LinkedIn Cookies We use cookies to improve your experience with our site. More information Accept Over 10 million scientific documents at your fingertips

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700