用户名: 密码: 验证码:
A comparative assessment of metal-Al2O3 joints formed using two distinct transient-liquid-phase-forming interlayers
详细信息    查看全文
  • 作者:Goffredo de Portu (1)
    Andreas M. Glaeser (2)
    Thomas B. Reynolds (2)
    Yasuhito Takahashi (3) (4)
    Marco Boffelli (3)
    Giuseppe Pezzotti (3)

    1. Institute of Science and Technology for Ceramics
    ; National Research Council of Italy (ISTEC-CNR) ; Via Granarolo 64 ; 48018 ; Faenza ; Italy
    2. Department of Materials Science and Engineering
    ; University of California ; Berkeley ; CA ; 94720-1760 ; USA
    3. Ceramic Physics Laboratory
    ; Kyoto Institute of Technology ; Sakyo-ku ; Matsugasaki ; Kyoto ; 606-8585 ; Japan
    4. Department of Bone and Joint Biomaterial Research
    ; Tokyo Medical University ; 6-7-1 ; Nishishinjuku ; Shinjuku-ku ; Tokyo ; 160-0023 ; Japan
  • 刊名:Journal of Materials Science
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:50
  • 期:6
  • 页码:2467-2479
  • 全文大小:1,602 KB
  • 参考文献:1. Fernie JA, Drew RAL, Knowles KM (2009) Joining of engineering ceramics. Int Mater Rev 54(5):283鈥?31 CrossRef
    2. R眉hle M, Evans AG (1989) Structure and chemistry of metal/ceramic interfaces. Mater Sci Eng A A107:187鈥?97 CrossRef
    3. Elssner G, Petzow G (1990) Ceramic/metal joining. ISIJ Int 30(12):1011鈥?032 CrossRef
    4. Brandon D, Kaplan WD (1997) Joining processes: an introduction. Wiley, New York, NY
    5. Bartlett A, Evans AG, R眉hle M (1991) Residual stress cracking of metal/ceramic bonds. Acta Metall Mater 39(7):1579鈥?585 CrossRef
    6. Shalz ML, Dalgleish BJ, Tomsia AP, Glaeser AM (1993) Ceramic joining part I partial transient liquid-phase bonding of alumina via Cu/Pt interlayers. J Mater Sci 28(6):1673鈥?684 CrossRef
    7. Shalz ML, Dalgleish BJ, Tomsia AP, Glaeser AM (1994) Ceramic joining II partial transient liquid-phase bonding of alumina via Cu/Ni/Cu multilayer interlayers. J Mater Sci 29(12):3200鈥?208 CrossRef
    8. Locatelli MR, Tomsia AP, Nakashima K, Dalgleish BJ, Glaeser AM (1995) New strategies for joining ceramics for high-temperature applications. Key Eng Mater 111鈥?12:157鈥?90 CrossRef
    9. Locatelli MR, Dalgleish BJ, Nakashima K, Tomsia AP, Glaeser AM (1997) New approaches to joining ceramics for high-temperature applications. (invited review). Ceram Int 23(4):313鈥?22 CrossRef
    10. Marks RA, Sugar JD, Glaeser AM (2001) Ceramic joining IV. Effects of processing conditions on the properties of alumina joined via Cu/Nb/Cu interlayers. J Mater Sci 36(23):5609鈥?624 CrossRef
    11. McKeown JT, Sugar JD, Gronsky R, Glaeser AM (2005) Processing of alumina-niobium interfaces via liquid-film assisted joining. Weld J 84(3):S41鈥揝52
    12. Sugar JD, McKeown JT, Akashi T, Hong S, Nakashima K, Glaeser AM (2006) Transient-liquid-phase and liquid-film-assisted joining of ceramics. J Eur Ceram Soc 26(4-5):363鈥?72 CrossRef
    13. Duvall DS, Owczarski WA, Paulonis DF (1974) TLP bonding: a new method for joining heat resistant alloys. Weld J 53(4):203鈥?14
    14. MacDonald DW, Eagar TW (1992) Transient liquid phase bonding. Ann Rev Mater Sci 22:23鈥?6 CrossRef
    15. Hong SM, Bartlow CC, Reynolds TB, McKeown JT, Glaeser AM (2008) Ultrarapid transient-liquid-phase bonding of Al2O3 ceramics. Adv Mater 20(24):4799鈥?803 CrossRef
    16. Evans AG, Dalgleish BJ (1993) The fracture resistance of metal-ceramic interfaces. Mater Sci Eng A A162(1-2):1鈥?3 CrossRef
    17. McNaney JM, Cannon RM, Ritchie RO (1994) Near-interfacial crack trajectories in metal-ceramic layered structures. Int J Fract 66(3):227鈥?40 CrossRef
    18. Beraud C, Courbiere M, Esnouf C, Juve D, Treheux D (1989) Study of copper-alumina bonding. J Mater Sci 24:4545鈥?554 CrossRef
    19. Reimanis IE (1992) Pore removal during diffusion bonding of Nb鈥擜l2O3 interfaces. Acta Metall Mater 40(Supplement):S67鈥揝74 CrossRef
    20. Allen RV, Borbidge WE (1983) Solid state metal-ceramic bonding of platinum to alumina. J Mater Sci 18(9):2835鈥?843 CrossRef
    21. Hong SM, Reynolds TB, Bartlow CC, Glaeser AM (2010) Rapid transient-liquidphase bonding of Al2O3 with microdesigned Ni/Nb/Ni interlayers. Int J Mater Res 101(1):133鈥?42 CrossRef
    22. ASM Alloy Phase Diagrams Center (http://www1.asminternational.org/ASMEnterprise/APD), Diagram No. 1301005
    23. Pezzotti G, Sbaizero O, Sergo V, Muraki N, Maruyama K, Nishida T (1998) In situ measurements of frictional bridging stresses in alumina using fluorescence spectroscopy. J Am Ceram Soc 81(1):187鈥?92 CrossRef
    24. de Portu G, Micele L, Pezzotti G (2005) Measurement of residual stress distributions in Al2O3/3Y-TZP multilayered composites by fluorescence and Raman microprobe piezo-spectroscopy. Acta Mater 53:1511鈥?520 CrossRef
    25. Pezzotti G, Takahashi Y, Zhu W, Sugano N (2012) In-depth profiling of elastic residual stress and the in vivo wear mechanism of self-mating alumina hip joints. Wear 84鈥?85:91鈥?7 CrossRef
    26. Munisso MC, Zhu W, Pezzotti G (2007) Stress dependence of sapphire cathodoluminescence from optically active oxygen defects as a function of crystallographic orientation. J Phys Chem A 11:3526鈥?533 CrossRef
    27. Pezzotti G, Munisso MC, Porporati AA, Lessnau K (2010) On the role of oxygen vacancies and lattice strain in the tetragonal to monoclinic transformation in alumina/zirconia composites and improved environmental stability. Biomater 31:6901鈥?908 CrossRef
    28. Takahashi Y, Zhu W, Sugano N, Pezzotti G (2011) On the role of oxygen vacancies, aliovalent ions and lattice strain in the in vivo wear behavior of alumina hip joints. J Mech Behav Biomed Mater 4(7):993鈥?003 CrossRef
    29. Oliver C, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564鈥?583 CrossRef
    30. Hong S (2009) Transient-liquid-phase (TLP) bonding of Al2O3 using Nb-based multilayer interlayers. Ph.D. thesis, University of California, Berkeley
    31. Valenza F, Muolo ML, Passerone A, Glaeser AM (2013) Wetting and interfacial phenomena in relation to joining of alumina via Co/Nb/Co interlayers. J Eur Ceram Soc 33(3):539鈥?47 CrossRef
    32. Reynolds TB (2012) Partial transient liquid phase bonding of advanced ceramics using surface-modified interlayers. Ph.D. thesis, University of California, Berkeley
    33. Agarwala RP, Hirano KI (1972) Diffusion of nickel in niobium. Trans Jpn Inst Metals 13:425鈥?27 CrossRef
    34. Ablitzer D (1977) Diffusion of niobium, iron, cobalt, nickel and copper in niobium. Phil Mag 35(5):1239鈥?256 CrossRef
    35. Razumovskii IM, Mishin Y, Herzig C (1996) Investigation of 63Ni diffusion along stationary and moving grain boundaries in Nb. Mater Sci Eng A 212(1):45鈥?0 CrossRef
    36. Penisson JM, Vystavel T (2000) Wetting of molybdenum grain boundaries by nickel: effect of the boundary structure and energy. Acta Mater 48(13):3303鈥?310 CrossRef
    37. Heijwegen C, Rieck G (1974) Diffusion in Mo鈥揘i, Mo鈥揊e and Mo鈥揅o systems. Acta Metall 22:1269鈥?281 CrossRef
    38. Hwang K, Huang H (2003) Identification of the segregation layer and its effects on the activated sintering and ductility of Ni-doped molybdenum. Acta Mater 51:3915鈥?926 CrossRef
    39. Rabkin E, Weygand D, Straumal B, Semenov V, Gust W, Brechet Y (1996) Liquid film migration in a Mo(Ni) bicrystal. Philos Mag Lett 73:187鈥?93 CrossRef
    40. Shi X, Luo J (2009) Grain boundary wetting and prewetting in Ni-doped Mo. Appl Phys Lett 94:251908 CrossRef
    41. Saiz E, Cannon RM, Tomsia AP (2008) High-temperature wetting and the work of adhesion in metal/oxide systems. Annu Rev Mater Res 38:197鈥?26 CrossRef
    42. CINDAS LLC, global benchmark for critically evaluated materials property data, TMPD Version 9 (May 2013); (https://cindasdata.com/Applications/TPMD/)
    43. Wang K, Reeber RR (1998) The role of defects on thermophysical properties: thermal expansion of V, Nb, Ta, Mo and W. Mater Sci Eng 23(3):101鈥?37 CrossRef
    44. Munro RG (1997) Evaluated materials properties for a sintered / 伪-alumina. J Am Ceram Soc 80(8):1919鈥?928 CrossRef
    45. Brandt G, Mikus M (1987) An electron microprobe and cathodoluminescence study of chemical reactions between tool and workpiece when turning steel with alumina-based ceramics. Wear 115:243鈥?63 CrossRef
    46. Ohuchi FS, Kohyama M (1991) Electronic-structure and chemical-reactions at metal alumina and metal aluminum nitride interfaces. J Am Ceram Soc 74:1163鈥?187 CrossRef
    47. Bolshakov A, Oliver WC, Pharr GM (1996) Influences of stress on the measurement of mechanical properties using nanoindentation: part II. Finite element simulations. J Mater Res 11(03):760鈥?68 CrossRef
    48. Xu Z-H, Li X (2005) Influence of equi-biaxial residual stress on unloading behaviour of nanoindentation. Acta Mater 53:1913鈥?919 CrossRef
    49. Wang L, Bei H, Gao YF, Lu ZP, Nieh TG (2011) Effect of residual stresses on the hardness of bulk metallic glasses. Acta Mater 59:2858鈥?864 CrossRef
    50. Dean J, Aldrich-Smith G, Clyne TW (2011) Use of nanoindentation to measure residual stresses in surface layers. Acta Mater 59:2749鈥?761 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Multilayer metallic interlayers with two different architectures, one Nb-based and the other V-based, both designed to produce a thin transient-liquid-phase layer, have been used to bond high-purity Al2O3 ceramics. The mechanical properties of the resulting Al2O3-metal joints were examined at both macro- and nano-scale levels. The roles of the interlayer designs (Ni/Mo/Nb/Mo/Ni vs. Ni/Nb/V/Nb/Ni), resulting joint microstructures, lattice defects, and residual stresses on mechanical properties and failure modes were evaluated. Reduced residual stresses and improved ceramic/metal interfacial microstructures contribute to the superior performance obtained with the Ni/Mo/Nb/Mo/Ni multilayer interlayer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700