用户名: 密码: 验证码:
Causal reasoning identifies mechanisms of sensitivity for a novel AKT kinase inhibitor, GSK690693
详细信息    查看全文
  • 作者:Rakesh Kumar (1)
    Stephen J Blakemore (1)
    Catherine E Ellis (1)
    Emanuel F Petricoin III (2)
    Dexter Pratt (3)
    Michael Macoritto (3)
    Andrea L Matthews (3)
    Joseph J Loureiro (3)
    Keith Elliston (3)
  • 刊名:BMC Genomics
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:11
  • 期:1
  • 全文大小:731KB
  • 参考文献:1. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB: Exploiting the PI3K/AKT pathway for cancer drug discovery. / Nat Rev Drug Discov 2005, 4: 988鈥?004. CrossRef
    2. Shaw RJ, Cantley LC: Ras, PI(3)K and mTOR signalling controls tumour cell growth. / Nature 2006, 441: 424鈥?30. CrossRef
    3. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR: Activation of AKT kinases in cancer: implications for therapeutic targeting. / Adv Cancer Res 2005, 94: 29鈥?6. CrossRef
    4. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, / et al.: A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. / Nature 2007, 448: 439鈥?44. CrossRef
    5. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV: The Akt/PKB pathway: molecular target for cancer drug discovery. / Oncogene 2005, 24: 7482鈥?492. CrossRef
    6. Hsieh MC, Lin SF, Shin SJ, Liu TC, Chang JG, Lee JP: Mutation analysis of PTEN/MMAC 1 in sporadic thyroid tumors. / Kaohsiung J Med Sci 2000, 16: 9鈥?2.
    7. Viglietto G, Motti ML, Bruni P, Melillo RM, D'Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P, Bellacosa A, / et al.: Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. / Nat Med 2002, 8: 1136鈥?144. CrossRef
    8. Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, / et al.: PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. / Nat Med 2002, 8: 1153鈥?160. CrossRef
    9. Weng LP, Brown JL, Eng C: PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. / Hum Mol Genet 2001, 10: 599鈥?04. CrossRef
    10. Meng Q, Xia C, Fang J, Rojanasakul Y, Jiang BH: Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. / Cell Signal 2006, 18: 2262鈥?271. CrossRef
    11. Gao N, Flynn DC, Zhang Z, Zhong XS, Walker V, Liu KJ, Shi X, Jiang BH: G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. / Am J Physiol Cell Physiol 2004, 287: C281鈥?91. CrossRef
    12. Evans-Anderson HJ, Alfieri CM, Yutzey KE: Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. / Circ Res 2008, 102: 686鈥?94. CrossRef
    13. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME: Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. / Cell 1999, 96: 857鈥?68. CrossRef
    14. Mayo LD, Donner DB: A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. / Proc Natl Acad Sci USA 2001, 98: 11598鈥?1603. CrossRef
    15. Rhodes N, Heerding DA, Duckett DR, Eberwein DJ, Knick VB, Lansing TJ, McConnell RT, Gilmer TM, Zhang SY, Robell K, / et al.: Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. / Cancer Res 2008, 68: 2366鈥?374. CrossRef
    16. Laifenfeld D, Gilchrist A, Drubin D, Jorge M, Eddy SF, Frushour BP, Ladd B, Obert LA, Gosink MM, Cook JC, / et al.: The role of hypoxia in 2-butoxyethanol-induced hemangiosarcoma. / Toxicol Sci 113: 254鈥?66.
    17. Smith JJ, Kenney RD, Gagne DJ, Frushour BP, Ladd W, Galonek HL, Israelian K, Song J, Razvadauskaite G, Lynch AV, / et al.: Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo. / BMC Syst Biol 2009, 3: 31. CrossRef
    18. Brunet A, Kanai F, Stehn J, Xu J, Sarbassova D, Frangioni JV, Dalal SN, DeCaprio JA, Greenberg ME, Yaffe MB: 14鈥?-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. / J Cell Biol 2002, 156: 817鈥?28. CrossRef
    19. Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M, Cron P, Cohen P, Lucocq JM, Hemmings BA: Role of translocation in the activation and function of protein kinase B. / J Biol Chem 1997, 272: 31515鈥?1524. CrossRef
    20. Rottmann S, Wang Y, Nasoff M, Deveraux QL, Quon KC: A TRAIL receptor-dependent synthetic lethal relationship between MYC activation and GSK3beta/FBW7 loss of function. / Proc Natl Acad Sci USA 2005, 102: 15195鈥?5200. CrossRef
    21. Varma S, Khandelwal RL: Overexpression of Akt1 upregulates glycogen synthase activity and phosphorylation of mTOR in IRS-1 knockdown HepG2 cells. / J Cell Biochem 2008, 103: 1424鈥?437. CrossRef
    22. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH: Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. / Nat Cell Biol 2007, 9: 316鈥?23. CrossRef
    23. Schmelzle T, Hall MN: TOR, a central controller of cell growth. / Cell 2000, 103: 253鈥?62. CrossRef
    24. Bouchard C, Marquardt J, Bras A, Medema RH, Eilers M: Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. / Embo J 2004, 23: 2830鈥?840. CrossRef
    25. Rottmann S, Luscher B: The Mad side of the Max network: antagonizing the function of Myc and more. / Curr Top Microbiol Immunol 2006, 302: 63鈥?22. CrossRef
    26. Delpuech O, Griffiths B, East P, Essafi A, Lam EW, Burgering B, Downward J, Schulze A: Induction of Mxi1-SR alpha by FOXO3a contributes to repression of Myc-dependent gene expression. / Mol Cell Biol 2007, 27: 4917鈥?930. CrossRef
    27. Edinger AL, Thompson CB: Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. / Mol Biol Cell 2002, 13: 2276鈥?288. CrossRef
    28. O'Donnell KA, Yu D, Zeller KI, Kim JW, Racke F, Thomas-Tikhonenko A, Dang CV: Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. / Mol Cell Biol 2006, 26: 2373鈥?386. CrossRef
    29. Lundberg AS, Weinberg RA: Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. / Mol Cell Biol 1998, 18: 753鈥?61.
    30. Zhang HS, Dean DC: Rb-mediated chromatin structure regulation and transcriptional repression. / Oncogene 2001, 20: 3134鈥?138. CrossRef
    31. Baulieu EE, Thomas G, Legrain S, Lahlou N, Roger M, Debuire B, Faucounau V, Girard L, Hervy MP, Latour F, / et al.: Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge Study to a sociobiomedical issue. / Proc Natl Acad Sci USA 2000, 97: 4279鈥?284. CrossRef
    32. Zhou BP, Hung MC: Novel targets of Akt, p21(Cipl/WAF1), and MDM2. / Semin Oncol 2002, 29: 62鈥?0.
    33. Liang J, Slingerland JM: Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. / Cell Cycle 2003, 2: 339鈥?45. CrossRef
    34. Besson A, Assoian RK, Roberts JM: Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors? / Nat Rev Cancer 2004, 4: 948鈥?55. CrossRef
    35. DeGregori J, Johnson DG: Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. / Curr Mol Med 2006, 6: 739鈥?48.
    36. Vita M, Henriksson M: The Myc oncoprotein as a therapeutic target for human cancer. / Semin Cancer Biol 2006, 16: 318鈥?30. CrossRef
    37. Gatter KC, Brown G, Trowbridge IS, Woolston RE, Mason DY: Transferrin receptors in human tissues: their distribution and possible clinical relevance. / J Clin Pathol 1983, 36: 539鈥?45. CrossRef
    38. Chitambar CR, Massey EJ, Seligman PA: Regulation of transferrin receptor expression on human leukemic cells during proliferation and induction of differentiation. Effects of gallium and dimethylsulfoxide. / J Clin Invest 1983, 72: 1314鈥?325. CrossRef
    39. Kuhn LC: The transferrin receptor: a key function in iron metabolism. / Schweiz Med Wochenschr 1989, 119: 1319鈥?326.
    40. Richardson DR: Iron chelators as therapeutic agents for the treatment of cancer. / Crit Rev Oncol Hematol 2002, 42: 267鈥?81. CrossRef
    41. Levy DS, Kahana JA, Kumar R: AKT inhibitor, GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines. / Blood 2009, 113: 1723鈥?729. CrossRef
    42. Altomare DA, Zhang L, Deng J, Di Cristofano A, Klein-Szanto AJ, Kumar R, Testa JR: GSK690693 delays tumor onset and progression in genetically defined mouse models expressing activated Akt. / Clin Cancer Res 16: 486鈥?96.
  • 作者单位:Rakesh Kumar (1)
    Stephen J Blakemore (1)
    Catherine E Ellis (1)
    Emanuel F Petricoin III (2)
    Dexter Pratt (3)
    Michael Macoritto (3)
    Andrea L Matthews (3)
    Joseph J Loureiro (3)
    Keith Elliston (3)

    1. Oncology Biology, GlaxoSmithKline, 1250 South Collegeville Road, 19426, Collegeville, PA, USA
    2. Center for Applied Proteomics and Molecular Medicine, George Mason University, 20110, Manassas, VA, USA
    3. One Alewife Center, Genstruct, Inc, 02140, Cambridge, MA, USA
文摘
Background Inappropriate activation of AKT signaling is a relatively common occurrence in human tumors, and can be caused by activation of components of, or by loss or decreased activity of inhibitors of, this signaling pathway. A novel, pan AKT kinase inhibitor, GSK690693, was developed in order to interfere with the inappropriate AKT signaling seen in these human malignancies. Causal network modeling is a systematic computational analysis that identifies upstream changes in gene regulation that can serve as explanations for observed changes in gene expression. In this study, causal network modeling is employed to elucidate mechanisms of action of GSK690693 that contribute to its observed biological effects. The mechanism of action of GSK690693 was evaluated in multiple human tumor cell lines from different tissues in 2-D cultures and xenografts using RNA expression and phosphoproteomics data. Understanding the molecular mechanism of action of novel targeted agents can enhance our understanding of various biological processes regulated by the intended target and facilitate their clinical development. Results Causal network modeling on transcriptomic and proteomic data identified molecular networks that are comprised of activated or inhibited mechanisms that could explain observed changes in the sensitive cell lines treated with GSK690693. Four networks common to all cell lines and xenografts tested were identified linking GSK690693 inhibition of AKT kinase activity to decreased proliferation. These networks included increased RB1 activity, decreased MYC activity, decreased TFRC activity, and increased FOXO1/FOXO3 activity. Conclusion AKT is involved in regulating both cell proliferation and apoptotic pathways; however, the primary effect with GSK690693 appears to be anti-proliferative in the cell lines and xenografts evaluated. Furthermore, these results indicate that anti-proliferative responses to GSK690693 in either 2-D culture or xenograft models may share common mechanisms within and across sensitive cell lines.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700