用户名: 密码: 验证码:
Breaking solitary waves and breaking wave forces on a vertically mounted slender cylinder over an impermeable sloping seabed
详细信息    查看全文
文摘
In the present study, breaking solitary waves over a sloping seabed and breaking wave forces on a vertically mounted cylinder are simulated with the three-dimensional CFD model REEF3D. The numerical model uses the Reynolds-Averaged Navier–Stokes (RANS) equations together with the level set method (LSM) for the free surface and the \(k-\omega \) for the turbulence. The numerical model is validated for simulating breaking solitary waves and breaking wave forces against the experimentally measured free surface profiles and vertical and horizontal velocities by Mo et al. (Ocean Eng 74:48–60, 2013) and the experimentally measured free surface elevation and breaking wave force by Chakrabarti et al. (Appl Ocean Res 19:113–140, 1997). The main purpose of the paper is to examine the effects of the breaking characteristics, the geometric properties, the relative cylinder positions and the incident wave heights on the breaking wave force characteristics. A total of 21 simulations are performed to investigate the characteristics and the geometric properties of solitary waves breaking over a slope and the associated breaking wave forces on a cylinder. First, the characteristics and geometric properties of breaking solitary waves are investigated with two-dimensional simulations. Further, the study explores the effect of the relative distance between the breaking point and the cylinder on breaking wave forces. Finally, the study examines breaking solitary wave forces for different incident waves. This also includes the analysis of breaking wave force characteristics such as the impact duration and rise time, the peak force, the average slamming coefficient and the force impulse. The results of the numerical simulations show that the relative distance between the cylinder and the breaking point plays an important role in obtaining the maximum force. In addition, the numerical model is capable of representing the most important physical flow features related to the breaking solitary waves and the interaction with the vertical slender cylinder.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700