RARB, FHIT, CSMD1, GATA4, and MTUS1—and others due to gains-em class="a-plus-plus">MCCC1, MYC, WISP1, PTK2, CCND1, FGF4, FADD, and CTTN. We also verified that the gains of MYC and WISP1 genes seem to suggest higher propensity of tumors localized in the floor of the mouth. This study proved the value of this MLPA probe panel for a first-tier analysis of oral tumors. The probemix was developed to include target regions that have been already shown to be of diagnostic/prognostic relevance for oral tumors. Furthermore, this study emphasized several of those specific genetic targets, suggesting its importance to oral tumor development, to predict patients-outcomes, and also to guide the development of novel molecular therapies." />
用户名: 密码: 验证码:
Genetic imbalances detected by multiplex ligation-dependent probe amplification in a cohort of patients with oral squamous cell carcinoma—the first step towards clinical personalized medicine
详细信息    查看全文
  • 作者:Ilda Patrícia Ribeiro (1) (2)
    Francisco Marques (2) (3) (4)
    Francisco Caramelo (5)
    José Ferr?o (1)
    Hugo Prazeres (6)
    Maria José Juli?o (7)
    Widad Rifi (8)
    Suvi Savola (8)
    Joana Barbosa de Melo (1) (2)
    Isabel Poiares Baptista (2) (3)
    Isabel Marques Carreira (1) (2)
  • 关键词:Genetic imbalances ; MLPA technique ; Gains and losses ; Oral squamous cell carcinoma
  • 刊名:Tumor Biology
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:35
  • 期:5
  • 页码:4687-4695
  • 全文大小:
  • 参考文献:1. Forastiere A, Koch W, Trotti A, Sidransky D. Head and neck cancer. N Engl J Med. 2001;345(26):1890-00. CrossRef
    2. Mitka M. Evidence lacking for benefit from oral cancer screening. JAMA. 2013;309(18):1884. doi:10.1001/jama.2013.4913 . CrossRef
    3. Llewellyn CD, Johnson NW, Warnakulasuriya KA. Risk factors for squamous cell carcinoma of the oral cavity in young people—a comprehensive literature review. Oral Oncol. 2001;37(5):401-8. CrossRef
    4. Wittekindt C, Wagner S, Mayer CS, Klussmann JP. Basics of tumor development and importance of human papilloma virus (HPV) for head and neck cancer. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2012;11:Doc09. doi:10.3205/cto000091 .
    5. Shah FD, Begum R, Vajaria BN, Patel KR, Patel JB, Shukla SN, et al. A review on salivary genomics and proteomics biomarkers in oral cancer. Indian J Clin Biochem. 2011;26(4):326-4. doi:10.1007/s12291-011-0149-8 . CrossRef
    6. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30(12):e57. CrossRef
    7. Homig-Holzel C, Savola S. Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn Mol Pathol. 2012;21(4):189-06. doi:10.1097/PDM.0b013e3182595516 . CrossRef
    8. Wittekind C, Greene FL, Hutter RVP, Klimpfinger M. LH. S. TNM atlas. Illustrated guide to the TNM/pTNM classification of malignant tumours. 5th ed. Berlin: Springer; 2003.
    9. Coffa J, Berg J. Analysis of MLPA data using novel software Coffalyser.NET by MRC-Holland. In: Eldin AB, editor. Modern approaches to quality control. Rijeka, Croatia: InTech; 2011. p. 125-0.
    10. Nobre RJ, Cruz E, Real O, de Almeida LP, Martins TC. Characterization of common and rare human papillomaviruses in Portuguese women by the polymerase chain reaction, restriction fragment length polymorphism and sequencing. J Med Virol. 2010;82(6):1024-2. doi:10.1002/jmv.21756 . CrossRef
    11. Bockmuhl U, Petersen S, Schmidt S, Wolf G, Jahnke V, Dietel M, et al. Patterns of chromosomal alterations in metastasizing and nonmetastasizing primary head and neck carcinomas. Cancer Res. 1997;57(23):5213-.
    12. Redon R, Muller D, Caulee K, Wanherdrick K, Abecassis J, du Manoir S. A simple specific pattern of chromosomal aberrations at early stages of head and neck squamous cell carcinomas: PIK3CA but not p63 gene as a likely target of 3q26-qter gains. Cancer Res. 2001;61(10):4122-.
    13. Ohta M, Inoue H, Cotticelli MG, Kastury K, Baffa R, Palazzo J, et al. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell. 1996;84(4):587-7. CrossRef
    14. Virgilio L, Shuster M, Gollin SM, Veronese ML, Ohta M, Huebner K, et al. FHIT gene alterations in head and neck squamous cell carcinomas. Proc Natl Acad Sci U S A. 1996;93(18):9770-. CrossRef
    15. Saldivar JC, Bene J, Hosseini SA, Miuma S, Horton S, Heerema NA, et al. Characterization of the role of Fhit in suppression of DNA damage. Adv Biol Regul. 2013;53(1):77-5. doi:10.1016/j.jbior.2012.10.003 . CrossRef
    16. Saldivar JC, Miuma S, Bene J, Hosseini SA, Shibata H, Sun J, et al. Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLoS Genet. 2012;8(11):e1003077. doi:10.1371/journal.pgen.1003077 . CrossRef
    17. Lotan R, Xu XC, Lippman SM, Ro JY, Lee JS, Lee JJ, et al. Suppression of retinoic acid receptor-beta in premalignant oral lesions and its up-regulation by isotretinoin. N Engl J Med. 1995;332(21):1405-0. doi:10.1056/NEJM199505253322103 . CrossRef
    18. Zou CP, Youssef EM, Zou CC, Carey TE, Lotan R. Differential effects of chromosome 3p deletion on the expression of the putative tumor suppressor RAR beta and on retinoid resistance in human squamous carcinoma cells. Oncogene. 2001;20(47):6820-. doi:10.1038/sj.onc.1204846 . CrossRef
    19. O’Shaughnessy JA, Kelloff GJ, Gordon GB, Dannenberg AJ, Hong WK, Fabian CJ, et al. Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin Cancer Res. 2002;8(2):314-6.
    20. Murugan AK, Hong NT, Fukui Y, Munirajan AK, Tsuchida N. Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas. Int J Oncol. 2008;32(1):101-1.
    21. Hermsen M, Guervos MA, Meijer G, Baak J, van Diest P, Marcos CA, et al. New chromosomal regions with high-level amplifications in squamous cell carcinomas of the larynx and pharynx, identified by comparative genomic hybridization. J Pathol. 2001;194(2):177-2. CrossRef
    22. Sun PC, Uppaluri R, Schmidt AP, Pashia ME, Quant EC, Sunwoo JB, et al. Transcript map of the 8p23 putative tumor suppressor region. Genomics. 2001;75(1-):17-5. doi:10.1006/geno.2001.6587 . CrossRef
    23. Ma C, Quesnelle KM, Sparano A, Rao S, Park MS, Cohen MA, et al. Characterization CSMD1 in a large set of primary lung, head and neck, breast and skin cancer tissues. Cancer Biol Ther. 2009;8(10):907-6. CrossRef
    24. \Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M, et al. GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol. 2003;23(23):8429-9. CrossRef
    25. Hellebrekers DM, Lentjes MH, van den Bosch SM, Melotte V, Wouters KA, Daenen KL, et al. GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin Cancer Res. 2009;15(12):3990-. doi:10.1158/1078-0432.CCR-09-0055 . CrossRef
    26. Zheng R, Blobel GA. GATA Transcription factors and cancer. Genes & Cancer. 2010;1(12):1178-8. doi:10.1177/1947601911404223 . CrossRef
    27. Seibold S, Rudroff C, Weber M, Galle J, Wanner C, Marx M. Identification of a new tumor suppressor gene located at chromosome 8p21.3-2. FASEB J. 2003;17(9):1180-. doi:10.1096/fj.02-0934fje .
    28. Zhou X, Temam S, Oh M, Pungpravat N, Huang BL, Mao L, et al. Global expression-based classification of lymph node metastasis and extracapsular spread of oral tongue squamous cell carcinoma. Neoplasia. 2006;8(11):925-2. doi:10.1593/neo.06430 . CrossRef
    29. Ye H, Pungpravat N, Huang BL, Muzio LL, Mariggio MA, Chen Z, et al. Genomic assessments of the frequent loss of heterozygosity region on 8p21.3–p22 in head and neck squamous cell carcinoma. Cancer Genet Cytogenet. 2007;176(2):100-. doi:10.1016/j.cancergencyto.2007.04.003 . CrossRef
    30. Squire JA, Bayani J, Luk C, Unwin L, Tokunaga J, MacMillan C, et al. Molecular cytogenetic analysis of head and neck squamous cell carcinoma: by comparative genomic hybridization, spectral karyotyping, and expression array analysis. Head Neck. 2002;24(9):874-7. doi:10.1002/hed.10122 . CrossRef
    31. da Silva Veiga LC, Bergamo NA, dos Reis PP, Kowalski LP, Rogatto SR. DNA gains at 8q23.2: a potential early marker in head and neck carcinomas. Cancer Genet Cytogenet. 2003;146(2):110-. CrossRef
    32. Saranath D, Panchal RG, Nair R, Mehta AR, Sanghavi V, Sumegi J, et al. Oncogene amplification in squamous cell carcinoma of the oral cavity. Jpn J Cancer Res. 1989;80(5):430-. CrossRef
    33. Vora HH, Shah NG, Patel DD, Trivedi TI, Chikhlikar PR. Prognostic significance of biomarkers in squamous cell carcinoma of the tongue: multivariate analysis. J Surg Oncol. 2003;82(1):34-0. doi:10.1002/jso.10183 . CrossRef
    34. Babic AM, Kireeva ML, Kolesnikova TV, Lau LF. CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci U S A. 1998;95(11):6355-0. CrossRef
    35. Hashimoto Y, Shindo-Okada N, Tani M, Takeuchi K, Toma H, Yokota J. Identification of genes differentially expressed in association with metastatic potential of K-1735 murine melanoma by messenger RNA differential display. Cancer Res. 1996;56(22):5266-1.
    36. Soon LL, Yie TA, Shvarts A, Levine AJ, Su F, Tchou-Wong KM. Overexpression of WISP-1 down-regulated motility and invasion of lung cancer cells through inhibition of Rac activation. J Biol Chem. 2003;278(13):11465-0. doi:10.1074/jbc.M210945200 . CrossRef
    37. Canel M, Secades P, Rodrigo JP, Cabanillas R, Herrero A, Suarez C, et al. Overexpression of focal adhesion kinase in head and neck squamous cell carcinoma is independent of fak gene copy number. Clin Cancer Res. 2006;12(11 Pt 1):3272-. doi:10.1158/1078-0432.CCR-05-1583 . CrossRef
    38. Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, et al. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Research. 1995;55(13):2752-.
    39. Schuuring E. The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes—a review. Gene. 1995;159(1):83-6. CrossRef
    40. Gibcus JH, Menkema L, Mastik MF, Hermsen MA, de Bock GH, van Velthuysen ML, et al. Amplicon mapping and expression profiling identify the Fas-associated death domain gene as a new driver in the 11q13.3 amplicon in laryngeal/pharyngeal cancer. Clin Cancer Res. 2007;13(21):6257-6. CrossRef
    41. Lese CM, Rossie KM, Appel BN, Reddy JK, Johnson JT, Myers EN, et al. Visualization of INT2 and HST1 amplification in oral squamous cell carcinomas. Genes Chromosomes Cancer. 1995;12(4):288-5. CrossRef
    42. Parikh RA, White JS, Huang X, Schoppy DW, Baysal BE, Baskaran R, et al. Loss of distal 11q is associated with DNA repair deficiency and reduced sensitivity to ionizing radiation in head and neck squamous cell carcinoma. Genes Chromosomes Cancer. 2007;46(8):761-5. doi:10.1002/gcc.20462 . CrossRef
    43. Huang Q, Yu GP, McCormick SA, Mo J, Datta B, Mahimkar M, et al. Genetic differences detected by comparative genomic hybridization in head and neck squamous cell carcinomas from different tumor sites: construction of oncogenetic trees for tumor progression. Genes, Chromosomes and Cancer. 2002;34(2):224-3. doi:10.1002/gcc.10062 . CrossRef
    44. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11(1):9-2. CrossRef
    45. Nix PA, Greenman J, Cawkwell L, Stafford ND. Defining the criteria for radioresistant laryngeal cancer. Clin Otolaryngol Allied Sci. 2004;29(6):705-. doi:10.1111/j.1365-2273.2004.00861.x . CrossRef
    46. Jeuken J, Cornelissen S, Boots-Sprenger S, Gijsen S, Wesseling P. Multiplex ligation-dependent probe amplification: a diagnostic tool for simultaneous identification of different genetic markers in glial tumors. J Mol Diagn. 2006;8(4):433-3. doi:10.2353/jmoldx.2006.060012 . CrossRef
  • 作者单位:Ilda Patrícia Ribeiro (1) (2)
    Francisco Marques (2) (3) (4)
    Francisco Caramelo (5)
    José Ferr?o (1)
    Hugo Prazeres (6)
    Maria José Juli?o (7)
    Widad Rifi (8)
    Suvi Savola (8)
    Joana Barbosa de Melo (1) (2)
    Isabel Poiares Baptista (2) (3)
    Isabel Marques Carreira (1) (2)

    1. Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal
    2. Center of Investigation on Environment Genetics and Oncobiology (CIMAGO). Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal
    3. Department of Dentistry, Faculty of Medicine, University of Coimbra, 3000-075, Coimbra, Portugal
    4. Stomatology Unit, Coimbra Hospital and University Centre, CHUC, EPE, 3000-075, Coimbra, Portugal
    5. Laboratory of Biostatistics and Medical Informatics, IBILI—Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal
    6. Molecular Pathology Laboratory, Portuguese Institute of Oncology of Coimbra FG, EPE, 3000-075, Coimbra, Portugal
    7. Department of Pathology, Coimbra Hospital and University Centre, CHUC, EPE, 3000-075, Coimbra, Portugal
    8. Department of Tumor Diagnostics, MRC-Holland, 1057DN, Amsterdam, The Netherlands
  • ISSN:1423-0380
文摘
Oral tumors are a growing health problem worldwide; thus, it is mandatory to establish genetic markers in order to improve diagnosis and early detection of tumors, control relapses and, ultimately, delineate individualized therapies. This study was the first to evaluate and discuss the clinical applicability of a multiplex ligation-dependent probe amplification (MLPA) probe panel directed to head and neck cancer. Thirty primary oral squamous cell tumors were analyzed using the P428 MLPA probe panel. We detected genetic imbalances in 26 patients and observed a consistent pattern of distribution of genetic alterations in terms of losses and gains for some chromosomes, particularly for chromosomes 3, 8, and 11. Regarding the latter, some specific genes were highlighted due to frequent losses of genetic material-em class="a-plus-plus">RARB, FHIT, CSMD1, GATA4, and MTUS1—and others due to gains-em class="a-plus-plus">MCCC1, MYC, WISP1, PTK2, CCND1, FGF4, FADD, and CTTN. We also verified that the gains of MYC and WISP1 genes seem to suggest higher propensity of tumors localized in the floor of the mouth. This study proved the value of this MLPA probe panel for a first-tier analysis of oral tumors. The probemix was developed to include target regions that have been already shown to be of diagnostic/prognostic relevance for oral tumors. Furthermore, this study emphasized several of those specific genetic targets, suggesting its importance to oral tumor development, to predict patients-outcomes, and also to guide the development of novel molecular therapies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700