用户名: 密码: 验证码:
Loss of primary cilia occurs early in breast cancer development
详细信息    查看全文
  • 作者:Ina Menzl (1)
    Lauren Lebeau (2)
    Ritu Pandey (1)
    Nadia B Hassounah (1)
    Frank W Li (3)
    Ray Nagle (1) (2)
    Karen Weihs (1) (4)
    Kimberly M McDermott (1) (3) (5)

    1. The University of Arizona Cancer Center
    ; University of Arizona ; Tucson ; AZ ; USA
    2. Department of Pathology
    ; University of Arizona Medical Center ; Tucson ; AZ ; USA
    3. Department of Cellular and Molecular Medicine
    ; University of Arizona ; Tucson ; AZ ; USA
    4. Department of Psychiatry
    ; University of Arizona Medical Center ; Tucson ; AZ ; USA
    5. Bio5 Institute
    ; University of Arizona ; Tucson ; AZ ; USA
  • 关键词:Primary cilia ; Invasive breast cancer ; Carcinoma in situ ; Cancer ; associated stroma ; Ciliogenesis ; Cilia length
  • 刊名:Cilia
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:3
  • 期:1
  • 全文大小:1,946 KB
  • 参考文献:1. Goetz, SC, Anderson, KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11: pp. 331-344 CrossRef
    2. Hildebrandt, F, Benzing, T, Katsanis, N (2011) Ciliopathies. N Engl J Med 364: pp. 1533-1543 CrossRef
    3. Hassounah, NB, Bunch, TA, McDermott, KM (2012) Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on Hedgehog signaling. Clin Cancer Res 18: pp. 2429-2435 CrossRef
    4. Basten, SG, Giles, RH (2013) Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2: pp. 6 CrossRef
    5. Wong, SY, Seol, AD, So, PL, Ermilov, AN, Bichakjian, CK, Epstein, EH, Dlugosz, AA, Reiter, JF (2009) Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 15: pp. 1055-1061 CrossRef
    6. Han, YG, Kim, HJ, Dlugosz, AA, Ellison, DW, Gilbertson, RJ, Alvarez-Buylla, A (2009) Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med 15: pp. 1062-1065 CrossRef
    7. Barakat, MT, Humke, EW, Scott, MP (2013) Kif3a is necessary for initiation and maintenance of medulloblastoma. Carcinogenesis 34: pp. 1382-1392 CrossRef
    8. Schraml, P, Frew, IJ, Thoma, CR, Boysen, G, Struckmann, K, Krek, W, Moch, H (2009) Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia. Mod Pathol 22: pp. 31-36 CrossRef
    9. Kim, J, Dabiri, S, Seeley, ES (2011) Primary cilium depletion typifies cutaneous melanoma in situ and malignant melanoma. PLoS ONE 6: pp. e27410 CrossRef
    10. Seeley, ES, Carriere, C, Goetze, T, Longnecker, DS, Korc, M (2009) Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res 69: pp. 422-430 CrossRef
    11. Gradilone, SA, Radtke, BN, Bogert, PS, Huang, BQ, Gajdos, GB, LaRusso, NF (2013) HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res 73: pp. 2259-2270 CrossRef
    12. Egeberg, DL, Lethan, M, Manguso, R, Schneider, L, Awan, A, Jorgensen, TS, Byskov, AG, Pedersen, LB, Christensen, ST (2013) Primary cilia and aberrant cell signaling in epithelial ovarian cancer. Cilia 1: pp. 15 CrossRef
    13. Hassounah, NB, Nagle, R, Saboda, K, Roe, DJ, Dalkin, BL, McDermott, KM (2013) Primary cilia are lost in preinvasive and invasive prostate cancer. PLoS ONE 8: pp. e68521 CrossRef
    14. Basten, SG, Willekers, S, Vermaat, JS, Slaats, GG, Voest, EE, van Diest, PJ, Giles, RH (2013) Reduced cilia frequencies in human renal cell carcinomas versus neighboring parenchymal tissue. Cilia 2: pp. 2 CrossRef
    15. Yuan, K, Frolova, N, Xie, Y, Wang, D, Cook, L, Kwon, YJ, Steg, AD, Serra, R, Frost, AR (2010) Primary cilia are decreased in breast cancer: analysis of a collection of human breast cancer cell lines and tissues. J Histochem Cytochem 58: pp. 857-870 CrossRef
    16. Nobutani, K, Shimono, Y, Yoshida, M, Mizutani, K, Minami, A, Kono, S, Mukohara, T, Yamasaki, T, Itoh, T, Takao, S, Minami, H, Azuma, T, Takai, Y (2014) Absence of primary cilia in cell cycle-arrested human breast cancer cells. Genes Cells 19: pp. 141-152 CrossRef
    17. Wettenhall, JM, Smyth, GK (2004) LimmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20: pp. 3705-3706 CrossRef
    18. Rhodes, DR, Yu, J, Shanker, K, Deshpande, N, Varambally, R, Ghosh, D, Barrette, T, Pandey, A, Chinnaiyan, AM (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6: pp. 1-6 CrossRef
    19. Visvader, JE (2009) Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 23: pp. 2563-2577 CrossRef
    20. McDermott, KM, Liu, BY, Tlsty, TD, Pazour, GJ (2010) Primary cilia regulate branching morphogenesis during mammary gland development. Curr Biol 20: pp. 731-737 CrossRef
    21. Pan, J, Snell, W (2007) The primary cilium: keeper of the key to cell division. Cell 129: pp. 1255-1257 CrossRef
    22. Scholzen, T, Gerdes, J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182: pp. 311-322 CrossRef
    23. Lingle, WL, Barrett, SL, Negron, VC, D鈥橝ssoro, AB, Boeneman, K, Liu, W, Whitehead, CM, Reynolds, C, Salisbury, JL (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci U S A 99: pp. 1978-1983 CrossRef
    24. Axlund, SD, Yoo, BH, Rosen, RB, Schaack, J, Kabos, P, Labarbera, DV, Sartorius, CA (2013) Progesterone-inducible cytokeratin 5-positive cells in luminal breast cancer exhibit progenitor properties. Horm Cancer 4: pp. 36-49 CrossRef
    25. Inanc, M, Ozkan, M, Karaca, H, Berk, V, Bozkurt, O, Duran, AO, Ozaslan, E, Akgun, H, Tekelioglu, F, Elmali, F (2014) Cytokeratin 5/6, c-Met expressions, and PTEN loss prognostic indicators in triple-negative breast cancer. Med Oncol 31: pp. 801 CrossRef
    26. Hanahan, D, Weinberg, RA (2011) Hallmarks of cancer: the next generation. Cell 144: pp. 646-674 CrossRef
    27. Broekhuis, JR, Leong, WY, Jansen, G (2013) Regulation of cilium length and intraflagellar transport. Int Rev Cell Mol Biol 303: pp. 101-138 CrossRef
    28. Bhogaraju, S, Engel, BD, Lorentzen, E (2013) Intraflagellar transport complex structure and cargo interactions. Cilia 2: pp. 10 CrossRef
    29. Richardson, AL, Wang, ZC, De Nicolo, A, Lu, X, Brown, M, Miron, A, Liao, X, Iglehart, JD, Livingston, DM, Ganesan, S (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9: pp. 121-132 CrossRef
    30. Schmidts, M, Arts, HH, Bongers, EM, Yap, Z, Oud, MM, Antony, D, Duijkers, L, Emes, RD, Stalker, J, Yntema, JB, Plagnol, V, Hoischen, A, Gilissen, C, Forsythe, E, Lausch, E, Veltman, JA, Roeleveld, N, Superti-Furga, A, Kutkowska-Kazmierczak, A, Kamsteeg, EJ, Elcioglu, N, van Maarle, MC, Graul-Neumann, LM, Devriendt, K, Smithson, SF, Wellesley, D, Verbeek, NE, Hennekam, RC, Kayserili, H, Scambler, PJ (2013) Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J Med Genet 50: pp. 309-323 CrossRef
    31. Dagoneau, N, Goulet, M, Genevieve, D, Sznajer, Y, Martinovic, J, Smithson, S, Huber, C, Baujat, G, Flori, E, Tecco, L, Cavalcanti, D, Delezoide, AL, Serre, V, Le Merrer, M, Munnich, A, Cormier-Daire, V (2009) DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet 84: pp. 706-711 CrossRef
    32. Yoon, JW, Gallant, M, Lamm, ML, Iannaccone, S, Vieux, KF, Proytcheva, M, Hyjek, E, Iannaccone, P, Walterhouse, D (2013) Noncanonical regulation of the Hedgehog mediator GLI1 by c-MYC in Burkitt lymphoma. Mol Cancer Res 11: pp. 604-615 CrossRef
    33. Corbit, KC, Shyer, AE, Dowdle, WE, Gaulden, J, Singla, V, Chen, MH, Chuang, PT, Reiter, JF (2008) Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 10: pp. 70-76 CrossRef
    34. Lancaster, MA, Schroth, J, Gleeson, JG (2011) Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat Cell Biol 13: pp. 700-707 CrossRef
    35. Benson, JR, Wishart, GC (2013) Predictors of recurrence for ductal carcinoma in situ after breast-conserving surgery. Lancet Oncol 14: pp. e348-e357 CrossRef
    36. Pazour, GJ, Rosenbaum, JL (2002) Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol 12: pp. 551-555 CrossRef
    37. Ostrowski, LE, Blackburn, K, Radde, KM, Moyer, MB, Schlatzer, DM, Moseley, A, Boucher, RC (2002) A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 1: pp. 451-465 CrossRef
    38. Li, JB, Gerdes, JM, Haycraft, CJ, Fan, Y, Teslovich, TM, May-Simera, H, Li, H, Blacque, OE, Li, L, Leitch, CC, Lewis, RA, Green, JS, Parfrey, PS, Leroux, MR, Davidson, WS, Beales, PL, Guay-Woodford, LM, Yoder, BK, Stormo, GD, Katsanis, N, Dutcher, SK (2004) Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117: pp. 541-552 CrossRef
    39. Smith, JC, Northey, JG, Garg, J, Pearlman, RE, Siu, KW (2005) Robust method for proteome analysis by MS/MS using an entire translated genome: demonstration on the ciliome of Tetrahymena thermophila. J Proteome Res 4: pp. 909-919 CrossRef
    40. Pazour, GJ, Agrin, N, Leszyk, J, Witman, GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170: pp. 103-113 CrossRef
    41. Gherman, A, Davis, EE, Katsanis, N (2006) The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet 38: pp. 961-962 CrossRef
    42. Inglis, PN, Boroevich, KA, Leroux, MR (2006) Piecing together a ciliome. Trends Genet 22: pp. 491-500 CrossRef
    43. Wagner, V, Gessner, G, Heiland, I, Kaminski, M, Hawat, S, Scheffler, K, Mittag, M (2006) Analysis of the phosphoproteome of Chlamydomonas reinhardtii provides new insights into various cellular pathways. Eukaryot Cell 5: pp. 457-468 CrossRef
    44. Liu, Q, Tan, G, Levenkova, N, Li, T, Pugh, EN, Rux, JJ, Speicher, DW, Pierce, EA (2007) The proteome of the mouse photoreceptor sensory cilium complex. Mol Cell Proteomics 6: pp. 1299-1317 CrossRef
    45. Mayer, U, Kuller, A, Daiber, PC, Neudorf, I, Warnken, U, Schnolzer, M, Frings, S, Mohrlen, F (2009) The proteome of rat olfactory sensory cilia. Proteomics 9: pp. 322-334 CrossRef
    46. Rosenbaum, JL, Witman, GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3: pp. 813-825 CrossRef
    47. Scholey, JM (2003) Intraflagellar transport. Annu Rev Cell Dev Biol 19: pp. 423-443 CrossRef
    48. Pazour, GJ (2004) Intraflagellar transport and cilia-dependent renal disease: the ciliary hypothesis of polycystic kidney disease. J Am Soc Nephrol 15: pp. 2528-2536 CrossRef
    49. Nachury, MV, Seeley, ES, Jin, H (2010) Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier?. Annu Rev Cell Dev Biol 26: pp. 59-87 CrossRef
    50. Ware, SM, Aygun, MG, Hildebrandt, F (2011) Spectrum of clinical diseases caused by disorders of primary cilia. Proc Am Thorac Soc 8: pp. 444-450 CrossRef
    51. Verghese, E, Weidenfeld, R, Bertram, JF, Ricardo, SD, Deane, JA (2008) Renal cilia display length alterations following tubular injury and are present early in epithelial repair. Nephrol Dial Transplant 23: pp. 834-841 CrossRef
    52. Kim, J, Lee, JE, Heynen-Genel, S, Suyama, E, Ono, K, Lee, K, Ideker, T, Aza-Blanc, P, Gleeson, JG (2010) Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464: pp. 1048-1051 CrossRef
    53. Tammachote, R, Hommerding, CJ, Sinders, RM, Miller, CA, Czarnecki, PG, Leightner, AC, Salisbury, JL, Ward, CJ, Torres, VE, Gattone, VH, Harris, PC (2009) Ciliary and centrosomal defects associated with mutation and depletion of the Meckel syndrome genes MKS1 and MKS3. Hum Mol Genet 18: pp. 3311-3323 CrossRef
    54. Rios, AC, Fu, NY, Lindeman, GJ, Visvader, JE (2014) In situ identification of bipotent stem cells in the mammary gland. Nature 506: pp. 322-327 CrossRef
    55. Perou, CM, Sorlie, T, Eisen, MB, van de Rijn, M, Jeffrey, SS, Rees, CA, Pollack, JR, Ross, DT, Johnsen, H, Akslen, LA, Fluge, O, Pergamenschikov, A, Williams, C, Zhu, SX, Lonning, PE, Borresen-Dale, AL, Brown, PO, Botstein, D (2000) Molecular portraits of human breast tumours. Nature 406: pp. 747-752 CrossRef
    56. Kabos, P, Haughian, JM, Wang, X, Dye, WW, Finlayson, C, Elias, A, Horwitz, KB, Sartorius, CA (2011) Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treat 128: pp. 45-55 CrossRef
    57. Lim, E, Vaillant, F, Wu, D, Forrest, NC, Pal, B, Hart, AH, Asselin-Labat, ML, Gyorki, DE, Ward, T, Partanen, A, Feleppa, F, Huschtscha, LI, Thorne, HK, kConFab, , Fox, SB, Yan, M, French, JD, Brown, MA, Smyth, GK, Visvader, JE, Lindeman, GJ (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15: pp. 907-913 CrossRef
    58. Boyd, NF, Dite, GS, Stone, J, Gunasekara, A, English, DR, McCredie, MR, Giles, GG, Tritchler, D, Chiarelli, A, Yaffe, MJ, Hopper, JL (2002) Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med 347: pp. 886-894 CrossRef
    59. Pavelka, N, Rancati, G, Li, R (2011) Dr Jekyll and Mr Hyde: role of aneuploidy in cellular adaptation and cancer. Curr Opin Cell Biol 22: pp. 809-815 CrossRef
    60. Dumont, N, Liu, B, Defilippis, RA, Chang, H, Rabban, JT, Karnezis, AN, Tjoe, JA, Marx, J, Parvin, B, Tlsty, TD (2013) Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia 15: pp. 249-262 CrossRef
  • 刊物主题:Cell Biology; Developmental Biology; Human Genetics; Molecular Medicine; Biochemistry, general; Receptors;
  • 出版者:BioMed Central
  • ISSN:2046-2530
文摘
Background Primary cilia are microtubule-based organelles that protrude from the cell surface. Primary cilia play a critical role in development and disease through regulation of signaling pathways including the Hedgehog pathway. Recent mouse models have also linked ciliary dysfunction to cancer. However, little is known about the role of primary cilia in breast cancer development. Primary cilia expression was characterized in cancer cells as well as their surrounding stromal cells from 86 breast cancer patients by counting cilia and measuring cilia length. In addition, we examined cilia expression in normal epithelial and stromal cells from reduction mammoplasties as well as histologically normal adjacent tissue for comparison. Results We observed a statistically significant decrease in the percentage of ciliated cells on both premalignant lesions as well as in invasive cancers. This loss of cilia does not correlate with increased proliferative index (Ki67-positive cells). However, we did detect rare ciliated cancer cells present in patients with invasive breast cancer and found that these express a marker of basaloid cancers that is associated with poor prognosis (Cytokeratin 5). Interestingly, the percentage of ciliated stromal cells associated with both premalignant and invasive cancers decreased when compared to stromal cells associated with normal tissue. To understand how cilia may be lost during cancer development we analyzed the expression of genes required for ciliogenesis and/or ciliary function and compared their expression in normal versus breast cancer samples. We found that expression of ciliary genes were frequently downregulated in human breast cancers. Conclusions These data suggest that primary cilia are lost early in breast cancer development on both the cancer cells and their surrounding stromal cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700