用户名: 密码: 验证码:
Electrochemical and oxygen reduction properties of pristine and nitrogen-doped few layered graphene nanoflakes (FLGs)
详细信息    查看全文
  • 作者:Navneet Soin (1) (5)
    Susanta Sinha Roy (2)
    Surbhi Sharma (3)
    Thomas Thundat (4)
    James A. McLaughlin (1)
  • 关键词:Graphene ; Few layered graphene nanoflakes ; Nitrogen doping ; Electrochemical properties ; Oxygen reduction reaction
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:17
  • 期:8
  • 页码:2139-2149
  • 全文大小:807KB
  • 参考文献:1. McCreery RL (2008) Chem Rev 108:2646-687 CrossRef
    2. Rice RJ, McCreery RL (1989) Anal Chem 61:1637-641 CrossRef
    3. Dumitrescu I, Unwin PR, Macpherson JV (2009) Chem Commun 45:6886-901 CrossRef
    4. Brownson DAC, Banks CE (2010) Analyst 135:2768-778 CrossRef
    5. Davies TJ, Hyde ME, Compton RG (2005) Angew Chem 117:5251-256 CrossRef
    6. Hallam PM, Banks CE (2011) Electrochem Commun 13:8-1 CrossRef
    7. Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Angew Chem 45:2533-537 CrossRef
    8. ?ljukic B, Banks CE, Richard G (2006) Nano Lett 6:1556-558 CrossRef
    9. Soin N, Roy SS, O’Kane C, Lim TH, Hetherington CJD, McLaughlin JAD (2011) CrystEnggComm 13:312-18 CrossRef
    10. Soin N, Roy SS, Roy S, Hazra KS, Misra DS, Lim TH, Hetherington CJD, McLaughlin JAD (2011) J Phys Chem C115:5366-372
    11. Soin N, Roy SS, Lim TH, McLaughlin JAD (2011) Mater Chem Phys 129(3):1051-057 CrossRef
    12. Soin N, Roy SS, Mitra SK, Thundat SK, McLaughlin JAD (2012) J Mater Chem 22:14944-4950 CrossRef
    13. Pumera M, Sasaki T, Iwai H (2008) Chem Asian J 3:2046-055 CrossRef
    14. Yu D, Nagelli E, Du F, Dai L (2010) J Phys Chem Lett 1:2165-173 CrossRef
    15. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760 CrossRef
    16. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) ACS Nano 5:4350-358 CrossRef
    17. Qu L, Liu Y, Baek JB, Dai L (2010) ACS Nano 4:1321-326 CrossRef
    18. Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y (2010) J Mater Chem 20:7491-496 CrossRef
    19. Shao Y, Sui J, Yin G, Gao Y (2008) Appl Catal, B 79:89-9 CrossRef
    20. Liu R, Wu D, Feng X, Müllen K (2010) Angew Chem 122:2619-623 CrossRef
    21. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2012) J Am Chem Soc 134:15-8 CrossRef
    22. Lee YH, Lee JH (2009) Appl Phys Lett 95:143102 CrossRef
    23. Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Adv Funct Mater 18:3506-514 CrossRef
    24. Jones CP, Jurkschat K, Crossley A, Richard G, Riehl BL, Banks CE (2007) Langmuir 23:9501-504 CrossRef
    25. Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Adv Funct Mater 19:2782-789 CrossRef
    26. Lin YG, Hsu YK, Wu CT, Chen SY, Chen KH, Chen LC (2009) Diamond Relat Mater 18:433-37 CrossRef
    27. Zoski CG (2007) Handbook of electrochemistry. Elsevier, Netherlands
    28. Bard AJ, Faulkner LR (2001) Electrochemical Methods-Fundamentals and applications. John Wiley & Sons
    29. Hrapovic S, Liu YL, Male KB, Luong JHT (2004) Anal Chem 76:1083-088 CrossRef
    30. Salinas-Torres D, Huerta F, Montilla F, Morallón E (2011) Electrochim Acta 56:2464-470 CrossRef
    31. Pacios M, Valle M, Bartroli J, Esplandiu MJ (2008) J Electroanal Chem 619:117-24
    32. Nicholson RS (1965) Anal Chem 37:1351-355 CrossRef
    33. Luais E, Boujtita M, Gohier A, Tailleur A, Casimirius S, Djouadi MA, Granier A, Tessier PY (2010) Appl Phys Lett 96:126103 CrossRef
    34. Davies TJ, Banks CE, Compton RG (2005) J Solid State Electrochem 9:797-08 CrossRef
    35. Kobayashi K (1993) Phys Rev B 48:1757 CrossRef
    36. Ji X, Banks CE, Crossley A, Compton RG (2006) ChemPhysChem 7:1337-344 CrossRef
    37. Yang SY, Chang KH, Huang YL, Lee YF, Tien HW, Li SM, Lee YH, Liu CH, Ma CM, Hu CC (2012) Electrochem Commun 14:39-2 CrossRef
    38. Kundu S, Nagaiah TC, Xia W, Wang Y, Dommele SV, Bitter JH, Santa M, Grundmeier G, Bron M, Schuhmann W (2009) J Phys Chem C 113:14302-4310 CrossRef
    39. Yeager E (1986) J Mol Catal 38:5-5 CrossRef
    40. Paliteiro C, Hamnett A, Goodenough JB (1987) J Electroanal Chem 233:147-59 CrossRef
    41. Abbas G, Papakonstantinou P, Iyer GRS, Kirkman IW, Chen CL (2007) Phys Rev B 75:195429 CrossRef
    42. Rao CV, Cabrera CR, Ishikawa Y (2010) J Phys Chem Lett 1:2622-627 CrossRef
    43. Sidik RA, Anderson AB, Subramanian NP, Kumaraguru SP, Popov BN (2006) J Phys Chem B 110:1787-793 CrossRef
    44. Okamoto Y (2009) Appl Surf Sci 256:335-41 CrossRef
    45. Matter PH, Zhang L, Ozkan US (2006) J Catal 239:83-6 CrossRef
    46. Wiggins-Camacho JD, Stevenson KJ (2009) J Phys Chem C 113:19082-9090 CrossRef
  • 作者单位:Navneet Soin (1) (5)
    Susanta Sinha Roy (2)
    Surbhi Sharma (3)
    Thomas Thundat (4)
    James A. McLaughlin (1)

    1. Nanotechnology and Integrated Bioengineering Centre (NIBEC), University of Ulster at Jordanstown, Shore Road, Newtownabbey, BT37 0QB, UK
    5. Institute of Renewable Energy and Environmental Technologies (IREET), Knowledge Centre for Materials Chemistry (KCMC), University of Bolton, Bolton, BL3 5AB, UK
    2. Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 203207, Uttar Pradesh, India
    3. School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
    4. Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB, T6G 2V4, Canada
文摘
Vertically aligned few layered graphene (FLGs) nanoflakes were synthesized by microwave plasma deposition for various time durations ranging from 30 to 600?s to yield graphene films of varying morphology, microstructure and areal/edge density. Their intrinsic electrochemical properties were explored using Fe(CN)6 3?4?/sup> and Ru(NH3)6 3+/2+ redox species. All the FLG electrodes demonstrate fast electron transfer kinetics with near ideal ΔEp values of 60-5?mV. Using a relationship between electron transfer rate and edge plane density, an estimation of the edge plane density was carried out which revealed a moderation of edge plane density with increase in growth time. The pristine FLGs also possess excellent electrocatalytic activity towards oxygen reduction reaction (ORR) in alkaline solutions. This ORR activity can be further enhanced by exposing the pristine FLGs to nitrogen electron cyclotron resonance plasma. The metal free N-doped FLGs exhibit much higher electrocatalytic activity towards ORR than pristine FLGs with higher durability and selectivity than Pt-based catalysts. The excellent electrochemical performance of N-doped FLGs is explained in terms of enhanced edge plane exposure, high content of pyridinic nitrogen and an increase in the electronic density of states.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700