用户名: 密码: 验证码:
Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor
详细信息    查看全文
  • 作者:R. Sadanandan ; M. St?hr and W. Meier
  • 刊名:Applied Physics B: Lasers and Optics
  • 出版年:2008
  • 出版时间:March, 2008
  • 年:2008
  • 卷:90
  • 期:3-4
  • 页码:609-618
  • 全文大小:836.7 KB
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Electromagnetism, Optics and Lasers
    Physical Chemistry
    Laser Technology and Physics and Photonics
    Quantum Optics, Quantum Electronics and Nonlinear Optics
    Optical Spectroscopy and Ultrafast Optics
    Physics and Applied Physics in Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0649
文摘
In highly turbulent environments, combustion is strongly influenced by the effects of turbulence chemistry interactions. Simultaneous measurement of the flow field and flame is, therefore, obligatory for a clear understanding of the underlying mechanisms. In the current studies simultaneous PIV and OH-PLIF measurements were conducted in an enclosed gas turbine model combustor for investigating the influence of turbulence on local flame characteristics. The swirling CH4/air flame that was investigated had a thermal power of 10.3 kW with an overall equivalence ratio of ?=0.75 and exhibited strong thermoacoustic oscillations at a frequency of approximately 295 Hz. The measurements reveal the formation of reaction zones at regions where hot burned gas from the recirculation zones mixes with the fresh fuel/air mixture at the nozzle exit. However, this does not seem to be a steady phenomenon as there always exist regions where the mixture has failed to ignite, possibly due to the high local strain rates present, resulting in small residence time available for a successful kinetic runaway to take place. The time averaged PIV images showed flow fields typical of enclosed swirl burners, namely a big inner recirculation zone and a small outer recirculation zone. However, the instantaneous images show the existence of small vortical structures close to the shear layers. These small vortical structures are seen playing a vital role in the formation and destruction of reaction zone structures. One does not see a smooth laminar flame front in the instantaneous OH-PLIF images, instead isolated regions of ignition and extinction highlighting the strong interplay between turbulence and chemical reactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700