用户名: 密码: 验证码:
Genome-wide analysis of the family 1 glycosyltransferases in cotton
详细信息    查看全文
  • 作者:Juan Huang ; Chaoyou Pang ; Shuli Fan ; Meizhen Song
  • 关键词:UDP ; glycosyltransferase ; PSPG ; Cotton ; Genome ; wide
  • 刊名:Molecular Genetics and Genomics
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:290
  • 期:5
  • 页码:1805-1818
  • 全文大小:2,831 KB
  • 参考文献:Achnine L, Huhman DV, Farag MA, Sumner LW, Blount JW, Dixon RA (2005) Genomics-based selection and functional characterization of glycosyltransferases from the model legume Medicago truncatula. Plant J 41(6):875-87CrossRef PubMed
    Barvkar VT, Pardeshi VC, Kale SM, Kadoo NY, Gupta VS (2012) Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns. BMC Genom 13:175CrossRef
    Bowles D (2002) A multigene family of glycosyltransferases in a model plant, Arabidopsis thaliana. Biochem Soc Trans 30(2):301-06CrossRef PubMed
    Bowles D, Isayenkova J, Lim E-K, Poppenberger B (2005) Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol 8(3):254-63CrossRef PubMed
    Caputi L, Malnoy M, Goremykin V, Nikiforova S, Martens S (2012) A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J 69(6):1030-042CrossRef PubMed
    Cartwright AM, Lim EK, Kleanthous C, Bowles DJ (2008) A kinetic analysis of regiospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: domain swapping to introduce new activities. J Biol Chem 283(23):15724-5731CrossRef PubMed Central PubMed
    Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328(2):307-17CrossRef PubMed
    Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids—a gold mine for metabolic engineering. Trends Plant Sci 4(10):394-00CrossRef PubMed
    Gachon CM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10(11):542-49CrossRef PubMed
    Gilbert MK, Bland JM, Shockey JM, Cao H, Hinchliffe DJ, Fang DD, Naoumkina M (2013) A transcript profiling approach reveals an abscisic acid-specific glycosyltransferase (UGT73C14) induced in developing fiber of Ligon lintless-2 mutant of cotton (Gossypium hirsutum L.). PLoS One 8(9):e75268CrossRef PubMed Central PubMed
    Glémin S, Clément Y, David J, Ressayre A (2014) GC content evolution in coding regions of angiosperm genomes: a unifying hypothesis. Trends Genet 30(7):263-70CrossRef PubMed
    Holub EB (2001) The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet 2(7):516-27CrossRef PubMed
    Hughes J, Hughes MA (1994) Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. DNA Seq 5(1):41-9PubMed
    Kohel R (1973) Genetic nomenclature in cotton. J Hered 64(5):291-95
    Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639-645CrossRef PubMed Central PubMed
    Lairson L, Henrissat B, Davies G, Withers S (2008) Glycosyltransferases: structures, functions, and mechanisms. Biochemistry 77(1):521CrossRef
    Li Y, Baldauf S, Lim EK, Bowles DJ (2001) Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem 276(6):4338-343CrossRef PubMed
    Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13(9):2178-189CrossRef PubMed Central PubMed
    Lim EK, Baldauf S, Li Y, Elias L, Worrall D, Spencer SP, Jackson RG, Taguchi G, Ross J, Bowles DJ (2003) Evolution of substrate recognition across a multigene family of glycosyltransferases in Arabidopsis. Glycobiology 13(3):139-45CrossRef PubMed
    Liu Q, Gao H, Zha L, Hu Z, Ma Y, Yu M, Chen L, Hu W (2014) Tuning bio-inspired skin-core structure of nascent fiber via interplay of polymer phase transitions. Phys Chem Chem Phys 16(29):15152-5157CrossRef PubMed
    Ma Q, Wu M, Pei W, Li H, Li X, Zhang J, Yu J, Yu S (2014) Quantitative phosphoproteomic profiling of fiber differentiation and initiation in a fiberless mutant of cotton. BMC Genom 15:466CrossRef
    Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Belanger A, Fournel-Gigleux S, Green M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury JR, Ritter JK, Schachter H, Tephly TR, Tipton KF, Nebert DW (1997) The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7(4):255-69CrossRef PubMed
    Osmani SA, Bak S, Moller BL (2009) Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 70(3):325-47CrossRef PubMed
    Paquette S, Moller BL, Bak S (2003) On the origin of family 1 plant glycosyltransferases. Phytochemistry 62(3):399-13CrossRef PubMed
    Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Gr
  • 作者单位:Juan Huang (1) (2)
    Chaoyou Pang (2)
    Shuli Fan (2)
    Meizhen Song (2)
    Jiwen Yu (2)
    Hengling Wei (2)
    Qifeng Ma (1) (2)
    Libei Li (2)
    Chi Zhang (1) (2)
    Shuxun Yu (1) (2)

    1. College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People’s Republic of China
    2. State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, People’s Republic of China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biochemistry
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1617-4623
文摘
Family 1 GT, designated as UGT, is the largest and most functionally important multigene family in the plant kingdom. In this study, we carried out a genome-wide identification, analysis, and comparison of 142, 146, and 196 putative UGTs from Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum, respectively. All members present the 44 amino-acid conserved consensus sequence termed the plant secondary product glycosyltransferase motif. According to the phylogenetic relationship among the cotton UGT proteins and those from other species, GrUGTs and GaUGTs could be classified into 16 major phylogenetic groups (A–P), whereas GhUGTs are classified into 15 major phylogenetic groups with a lack of group C. All cotton UGTs are dispersed throughout the chromosomes and are displayed in clusters with the same open reading frame orientation. The expansion of them appears to result from genome duplication and rearrangement. Two conserved introns, A and B, are detected in most of the intron-containing-UGTs in G. raimondii and G. arboreum, whereas only intron A is detected in the intron-containing-UGTs in G. hirsutum. Furthermore, expression patterns of the UGT genes in G. hirsutum wild type and its near isogenic fuzzless–lintless mutant at the stage of fiber initiation were analyzed using the RNA-seq data. Overall, this study not only deepens our understanding of the structure, phylogeny, evolution, and expression of cotton UGT genes, but also provides a solid foundation for further cloning and functional studies of the UGT family genes. Keywords UDP-glycosyltransferase PSPG Cotton Genome-wide

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700