用户名: 密码: 验证码:
GOLPH3 Mediated Golgi Stress Response in Modulating N2A Cell Death upon Oxygen-Glucose Deprivation and Reoxygenation Injury
详细信息    查看全文
  • 作者:Ting Li ; Hong You ; Xiaoye Mo ; Wenfang He ; Xiangqi Tang…
  • 关键词:GOLPH3 ; Ischemia/reperfusion ; Oxygen ; glucose deprivation and reoxygenation (OGD/R) ; Golgi stress response ; Reactive oxygen species (ROS) ; Autophagy ; ER stress ; Apoptosis ; Mitochondria ; Oxidative stress
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:53
  • 期:2
  • 页码:1377-1385
  • 全文大小:875 KB
  • 参考文献:1.Robbins E, Gonatas NK (1964) The ultrastructure of a mammalian cell during the mitotic cycle. J Cell Biol 21:429–463PubMedCentral CrossRef PubMed
    2.Nakagomi S et al (2008) A Golgi fragmentation pathway in neurodegeneration. Neurobiol Dis 29(2):221–231PubMedCentral CrossRef PubMed
    3.Oku M et al (2011) Novel cis-acting element GASE regulates transcriptional induction by the Golgi stress response. Cell Struct Funct 36(1):1–12CrossRef PubMed
    4.Wu CC et al (2000) GMx33: a novel family of trans-Golgi proteins identified by proteomics. Traffic 1(12):963–975PubMed
    5.Bonangelino CJ, Chavez EM, Bonifacino JS (2002) Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol Biol Cell 13(7):2486–2501PubMedCentral CrossRef PubMed
    6.Partridge EA et al (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306(5693):120–124CrossRef PubMed
    7.Nakashima-Kamimura N et al (2005) MIDAS/GPP34, a nuclear gene product, regulates total mitochondrial mass in response to mitochondrial dysfunction. J Cell Sci 118(Pt 22):5357–5367CrossRef PubMed
    8.Snyder CM et al (2006) GMx33 associates with the trans-Golgi matrix in a dynamic manner and sorts within tubules exiting the Golgi. Mol Biol Cell 17(1):511–524PubMedCentral CrossRef PubMed
    9.Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484CrossRef PubMed
    10.Nagano-Ito M et al (2007) Identification and characterization of a novel alternative splice variant of mouse GMx33alpha/GPP34. Gene 400(1–2):82–88CrossRef PubMed
    11.Scott KL et al (2009) GOLPH3 modulates mTOR signalling and rapamycin sensitivity in cancer. Nature 459(7250):1085–1090PubMedCentral CrossRef PubMed
    12.Dippold HC et al (2009) GOLPH3 bridges phosphatidylinositol-4-phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139(2):337–351PubMedCentral CrossRef PubMed
    13.Wood CS et al (2009) PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J Cell Biol 187(7):967–975PubMedCentral CrossRef PubMed
    14.Wong KR, Meyers DD, Cantley LC (1997) Subcellular locations of phosphatidylinositol 4-kinase isoforms. J Biol Chem 272(20):13236–13241CrossRef PubMed
    15.D’Angelo G et al (2008) The multiple roles of PtdIns(4)P—not just the precursor of PtdIns(4,5)P2. J Cell Sci 121(Pt 12):1955–1963CrossRef PubMed
    16.Godi A et al (2004) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6(5):393–404CrossRef PubMed
    17.Shima H et al (1998) Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 17(22):6649–6659PubMedCentral CrossRef PubMed
    18.Montagne J et al (1999) Drosophila S6 kinase: a regulator of cell size. Science 285(5436):2126–2129CrossRef PubMed
    19.Oldham S et al (2000) Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 14(21):2689–2694PubMedCentral CrossRef PubMed
    20.Zhang H et al (2000) Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 14(21):2712–2724PubMedCentral CrossRef PubMed
    21.Hashimoto O et al (2011) Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1alpha-dependent manner in pancreatic cancer cells. Pathobiology 78(4):181–192CrossRef PubMed
    22.Hu Z et al (2007) Morphological alteration of Golgi apparatus and subcellular compartmentalization of TGF-beta1 in Golgi apparatus in gerbils following transient forebrain ischemia. Neurochem Res 32(11):1927–1931CrossRef PubMed
    23.Perez Velazquez JL, Frantseva MV, Carlen PL (1997) In vitro ischemia promotes glutamate-mediated free radical generation and intracellular calcium accumulation in hippocampal pyramidal neurons. J Neurosci 17(23):9085–9094PubMed
    24.Ott M et al (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922CrossRef PubMed
    25.Shi Y et al (2012) Autophagy protects against oxaliplatin-induced cell death via ER stress and ROS in Caco-2 cells. PLoS One 7(11):e51076PubMedCentral CrossRef PubMed
    26.Li L, Ishdorj G, Gibson SB (2012) Reactive oxygen species regulation of autophagy in cancer: implications for cancer treatment. Free Radic Biol Med 53(7):1399–1410CrossRef PubMed
    27.Shen W et al. (20120 Oxidative stress mediates chemerin-induced autophagy in endothelial cells, in Free Radic Biol Med. p. 73–82
    28.Li L, Chen Y, Gibson SB (2013) Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal 25(1):50–65CrossRef PubMed
    29.Hoyer-Hansen M, Jaattela M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14(9):1576–1582CrossRef PubMed
    30.Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441(2):523–540PubMedCentral CrossRef PubMed
    31.Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529CrossRef PubMed
    32.Hicks SW, Machamer CE (2005) Golgi structure in stress sensing and apoptosis. Biochim Biophys Acta 1744(3):406–414CrossRef PubMed
    33.Salvesen GS, Abrams JM (2004) Caspase activation—stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene 23(16):2774–2784CrossRef PubMed
    34.Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762PubMedCentral CrossRef PubMed
    35.Mancini M et al (2000) Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 149(3):603–612PubMedCentral CrossRef PubMed
    36.Lowe M et al (2004) Caspase-mediated cleavage of syntaxin 5 and giantin accompanies inhibition of secretory traffic during apoptosis. J Cell Sci 117(Pt 7):1139–1150CrossRef PubMed
    37.Maag RS et al (2005) Caspase-resistant Golgin-160 disrupts apoptosis induced by secretory pathway stress and ligation of death receptors. Mol Biol Cell 16(6):3019–3027PubMedCentral CrossRef PubMed
    38.Bell AW et al (2001) Proteomics characterization of abundant Golgi membrane proteins. J Biol Chem 276(7):5152–5165CrossRef PubMed
    39.Schmitz KR et al (2008) Golgi localization of glycosyltransferases requires a Vps74p oligomer. Dev Cell 14(4):523–534PubMedCentral CrossRef PubMed
    40.Tu L et al (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321(5887):404–407CrossRef PubMed
    41.Cummings RD, Soderquist AM, Carpenter G (1985) The oligosaccharide moieties of the epidermal growth factor receptor in A-431 cells. Presence of complex-type N-linked chains that contain terminal N-acetylgalactosamine residues. J Biol Chem 260(22):11944–11952PubMed
    42.Soderquist AM, Carpenter G (1984) Glycosylation of the epidermal growth factor receptor in A-431 cells. The contribution of carbohydrate to receptor function. J Biol Chem 259(20):12586–12594PubMed
    43.Gottlieb RA (2011) Cell death pathways in acute ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther 16(3–4):233–238CrossRef PubMed
    44.Farinelli SE, Greene LA (1996) Cell cycle blockers mimosine, ciclopirox, and deferoxamine prevent the death of PC12 cells and postmitotic sympathetic neurons after removal of trophic support. J Neurosci 16(3):1150–1162PubMed
    45.Olsen A, Vantipalli MC, Lithgow GJ (2006) Checkpoint proteins control survival of the postmitotic cells in Caenorhabditis elegans. Science 312(5778):1381–1385PubMedCentral CrossRef PubMed
  • 作者单位:Ting Li (1)
    Hong You (1)
    Xiaoye Mo (1)
    Wenfang He (1)
    Xiangqi Tang (1)
    Zheng Jiang (1)
    Shiyu Chen (1)
    Yang Chen (1)
    Jie Zhang (1)
    Zhiping Hu (1)

    1. The Second Xiangya Hospital Central South University, Changsha, Hunan, China
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Increasing evidence implicating that the organelle-dependent initiation of cell death merits further research. The evidence also implicates Golgi as a sensor and common downstream-effector of stress signals in cell death pathways, and it undergoes disassembly and fragmentation during apoptosis in several neurological disorders. It has also been reported that during apoptotic cell death, there is a cross talk between ER, mitochondria, and Golgi. Thus, we hypothesized that Golgi might trigger death signals during oxidative stress through its own machinery. The current study found that GOLPH3, an outer membrane protein of the Golgi complex, was significantly upregulated in N2A cells upon oxygen-glucose deprivation and reoxygenation (OGD/R), positioning from the compact perinuclear ribbon to dispersed vesicle-like structures throughout the cytoplasm. Additionally, elevated GOLPH3 promoted a stress-induced conversion of the LC3 subunit I to II and reactive oxygen species (ROS) production in long-term OGD/R groups. The collective data indicated that GOLPH3 not only acted as a sensor of Golgi stress for its prompt upregulation during oxidative stress but also as an initiator that triggered and propagated specific Golgi stress signals to downstream effectors. This affected ROS production and stress-related autophagy and finally controlled the entry into apoptosis. The data also supported the hypothesis that the Golgi apparatus could be an ideal target for stroke, neurodegenerative diseases, or cancer therapy through its own functional proteins. Keywords GOLPH3 Ischemia/reperfusion Oxygen-glucose deprivation and reoxygenation (OGD/R) Golgi stress response Reactive oxygen species (ROS) Autophagy ER stress Apoptosis Mitochondria Oxidative stress

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700