用户名: 密码: 验证码:
Stationary Scattering in Planar Confining Geometries
详细信息    查看全文
  • 刊名:Lecture Notes in Physics
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:927
  • 期:1
  • 页码:59-101
  • 全文大小:688 KB
  • 参考文献:1.S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005)CrossRef MATH
    2.C. Jacoboni, Theory of Electron Transport in Semiconductors. Springer Series in Solid-State Sciences, vol. 165 (Springer, Berlin, 2010)
    3.D. Ferry, S.M. Goodnick, Transport in Nanostructures (Cambridge University Press, Cambridge, 1997)CrossRef
    4.S.E. Laux, D.J. Frank, F. Stern, Quasi-one-dimensional electron states in a split-gate GaAs/AlGaAs heterostructure. Surf. Sci. 196 (1–3), 101 (1988)
    5.J.A. Nixon, J.H. Davies, H.U. Baranger, Conductance of quantum point contacts calculated using realistic potentials. Superlattice. Microstruct. 9 (2), 187 (1991)
    6.S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)CrossRef
    7.E.N. Economou, Green’s Functions in Quantum Physics (Springer, Berlin, 2006)CrossRef
    8.P. Mello, N. Kumar, Quantum Transport in Mesoscopic Systems: Complexity and Statistical Fluctuations, a Maximum-Entropy Viewpoint (Oxford University Press, New York, 2004)CrossRef
    9.P. Roman, Advanced Quantum Theory (Addison-Wesley, Reading, 1965)MATH
    10.H. Haug, A. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 2007)
    11.P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)MATH
    12.F. Sols, Scattering, dissipation, and transport in mesoscopic systems. Ann. Phys. 214 (2), 386 (1992)
    13.A.D. Stone, A. Szafer, What is measured when you measure a resistance? The Landauer formula revisited. IBM J. Res. Dev. 32 (3), 384 (1988)
    14.D.S. Fisher, P.A. Lee, Relation between conductivity and transmission matrix. Phys. Rev. B 23 (12), 6851 (1981)
    15.H.U. Baranger, A.D. Stone, Electrical linear-response theory in an arbitrary magnetic field: a new Fermi-surface formation. Phys. Rev. B 40 (12), 8169 (1989)
    16.S. Rotter, B. Weingartner, N. Rohringer, J. Burgdörfer, Ballistic quantum transport at high energies and high magnetic fields. Phys. Rev. B 68 (16), 165302 (2003)
    17.F.M. Peeters, J. De Boeck, Chapter 7 - Hybrid magnetic-semiconductor nanostructures, in Handbook of Nanostructured Materials and Nanotechnology, ed. by H.S. Nalwa (Academic Press, Burlington, 2000), pp. 345–426CrossRef
    18.H.A. Carmona, A.K. Geim, A. Nogaret, P.C. Main, T.J. Foster, M. Henini, S.P. Beaumont, M.G. Blamire, Two Dimensional Electrons in a Lateral Magnetic Superlattice. Phys. Rev. Lett. 74 (15), 3009 (1995)
    19.A. Nogaret, S.J. Bending, M. Henini, Resistance resonance effects through magnetic edge states. Phys. Rev. Lett. 84 (10), 2231 (2000)
    20.P.D. Ye, D. Weiss, R.R. Gerhardts, M. Seeger, K. von Klitzing, K. Eberl, H. Nickel, Electrons in a periodic magnetic field induced by a regular array of micromagnets. Phys. Rev. Lett. 74 (15), 3013 (1995)
    21.M. Di Ventra, Electrical Transport in Nanoscale Systems (Cambridge University Press, Cambridge, 2008)CrossRef
    22.H.U. Baranger, D.P. DiVincenzo, R.A. Jalabert, A.D. Stone, Classical and quantum ballistic-transport anomalies in microjunctions. Phys. Rev. B 44 (19), 10637 (1991)
    23.M.J. McLennan, Y. Lee, S. Datta, Voltage drop in mesoscopic systems: a numerical study using a quantum kinetic equation. Phys. Rev. B 43 (17), 13846 (1991)
    24.J.M. Ziman, Elements of Advanced Quantum Theory (Cambridge University Press, Cambridge, 1969)MATH
    25.K. Gottfried, T. Yan, Quantum Mechanics: Fundamentals (Springer, New York, 2003)CrossRef MATH
    26.B.A. Lippmann, J. Schwinger, Variational principles for scattering processes. I. Phys. Rev. 79 (3), 469 (1950)
    27.R.H. Landau, Quantum Mechanics II: A Second Course in Quantum Theory (Wiley, New York, 2004)
    28.J.R. Taylor, Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (Wiley, New York, 1972)
    29.M. Born, Zur Quantenmechanik der Stoßvorgänge. Z. Phys. 37 (12), 863 (1926)MathSciNet
    30.L. Reichl, The Transition to Chaos: Conservative Classical Systems and Quantum Manifestations (Springer, Berlin, 2004)CrossRef MATH
    31.A.M. Lane, R.G. Thomas, R-Matrix theory of nuclear reactions. Rev. Mod. Phys. 30 (2), 257 (1958)
    32.E.P. Wigner, L. Eisenbud, Higher angular momenta and long range interaction in resonance reactions. Phys. Rev. 72 (1), 29 (1947)
    33.G. Akguc, L.E. Reichl, Effect of evanescent modes and chaos on deterministic scattering in electron waveguides. Phys. Rev. E 64 (5), 056221 (2001)
    34.G.B. Akguc, L.E. Reichl, Direct scattering processes and signatures of chaos in quantum waveguides. Phys. Rev. E 67 (4), 046202 (2003)
    35.H. Schanz, Reaction matrix for Dirichlet billiards with attached waveguides. Physica E 18 (4), 429 (2003)
    36.B. Farid, Ground and low-lying excited states of interacting electron systems; a survey and some critical analyses, in Electron Correlation in the Solid State (World Scientific, Singapore, 1999), p. 103
    37.B. Farid, A Luttinger’s theorem revisited. Philos. Mag. B 79 (8), 1097 (1999)
    38.G. Onida, L. Reining, A. Rubio, Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74 (2), 601 (2002)
    39.W.V. Haeringen, B. Farid, D. Lenstra, On the many body theory of the energy gap in semiconductors. Phys. Scr. 1987 (T19A), 282 (1987)
    40.H. Bruus, K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction (Oxford University Press, Oxford, 2004)
    41.N. Aoki, R. Brunner, A.M. Burke, R. Akis, R. Meisels, D.K. Ferry, Y. Ochiai, Direct imaging of electron states in open quantum dots. Phys. Rev. Lett. 108 (13), 136804 (2012)
    42.L.V. Keldysh, Diagram technique for nonequilibrium processes. Sov. Phys. JETP 20, 1018 (1965)MathSciNet
    43.L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium Problems (W.A. Benjamin, New York, 1962)MATH
    44.S. Datta, Steady-state quantum kinetic equation. Phys. Rev. B 40 (8), 5830 (1989)
    45.S. Datta, A simple kinetic equation for steady-state quantum transport. J. Phys. Condens. Matter 2 (40), 8023 (1990)
    46.S. Datta, Nanoscale device modeling: the Green’s function method. Superlattice. Microstruct. 28 (4), 253 (2000)
    47.R. Lake, S. Datta, Nonequilibrium Green’s-function method applied to double-barrier resonant-tunneling diodes. Phys. Rev. B 45 (12), 6670 (1992)
    48.R. Lake, G. Klimeck, R.C. Bowen, D. Jovanovic, Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81 (12), 7845 (1997)
    49.M. Galperin, M.A. Ratner, A. Nitzan, Molecular transport junctions: vibrational effects. J. Phys. Condens. Matter 19 (10), 103201 (2007)
    50.J. Taylor, H. Guo, J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63 (24), 245407 (2001)
    51.M.P. Anantram, S. Datta, Effect of phase breaking on the ac response of mesoscopic systems. Phys. Rev. B 51 (12), 7632 (1995)
    52.B. Gaury, J. Weston, M. Santin, M. Houzet, C. Groth, X. Waintal, Numerical simulations of time-resolved quantum electronics. Phys. Rep. 534 (1), 1 (2014)
    53.A. Jauho, N.S. Wingreen, Y. Meir, Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B 50 (8), 5528 (1994)
    54.O. Shevtsov, X. Waintal, Numerical toolkit for electronic quantum transport at finite frequency. Phys. Rev. B 87 (8), 085304 (2013)
    55.B. Wang, J. Wang, H. Guo, Current partition: a nonequilibrium Green’s function approach. Phys. Rev. Lett. 82 (2), 398 (1999)
    56.N.S. Wingreen, A. Jauho, Y. Meir, Time-dependent transport through a mesoscopic structure. Phys. Rev. B 48 (11), 8487 (1993)
    57.M.P. Anantram, M. Lundstrom, D. Nikonov, Modeling of nanoscale devices. Proc. IEEE 96 (9), 1511 (2008)
    58.Y. Meir, N.S. Wingreen, Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68 (16), 2512 (1992)
    59.C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, Direct calculation of the tunneling current. J. Phys. C Solid State Phys. 4 (8), 916 (1971)
    60.S. Datta, Exclusion principle and the Landauer-Büttiker formalism. Phys. Rev. B 45 (3), 1347 (1992)
    61.U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124 (6), 1866 (1961)
    62.Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115 (3), 485 (1959)
    63.Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, New York, 2008)
    64.A.I. Magunov, I. Rotter, S.I. Strakhova, Fano resonances in the overlapping regime. Phys. Rev. B 68 (24), 245305 (2003)
    65.M. Mendoza, P.A. Schulz, R.O. Vallejos, C.H. Lewenkopf, Fano resonances in the conductance of quantum dots with mixed dynamics. Phys. Rev. B 77 (15), 155307 (2008)
    66.E.R. Racec, U. Wulf, P.N. Racec, Fano regime of transport through open quantum dots. Phys. Rev. B 82 (8), 085313 (2010)
    67.U. Fano, Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco. Nuovo Cimento 12 (3), 154 (1935)
    68.U. Fano, G. Pupillo, A. Zannoni, C. Clark, On the absorption spectrum of noble gases at the arc spectrum limit. J. Res. Natl. Inst. Stand. Technol. 110 (6), 583 (2005)
    69.H. Feshbach, Unified theory of nuclear reactions. Ann. Phys. 5 (4), 357 (1958)
    70.G. Bassani, S.I. di Fisica, Ettore Majorana: Scientific Papers (Springer, Berlin, 2007)
    71.E. Majorana, Teoria dei triplettiP’ Incompleti. Nuovo Cimento 8 (1), 107 (1931)
    72.A. Vittorini-Orgeas, A. Bianconi, From Majorana Theory of Atomic Autoionization to Feshbach Resonances in High Temperature Superconductors. J. Supercond. 22 (3), 215 (2009)
    73.A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Fano resonances in nanoscale structures. Rev. Mod. Phys. 82 (3), 2257 (2010)
    74.K. Sasada, N. Hatano, G. Ordonez, Resonant spectrum analysis of the conductance of an open quantum system and three types of Fano parameter. J. Phys. Soc. Jpn. 80 (10), 104707 (2011)
    75.T. Nakanishi, K. Terakura, T. Ando, Theory of Fano effects in an Aharonov-Bohm ring with a quantum dot. Phys. Rev. B 69 (11), 115307 (2004)
    76.A.A. Clerk, X. Waintal, P.W. Brouwer, Fano resonances as a probe of phase coherence in quantum dots. Phys. Rev. Lett. 86 (20), 4636 (2001)
    77.A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, H. Stöckmann, Probing decoherence through Fano resonances. Phys. Rev. Lett. 105 (5), 056801 (2010)
    78.Y. Aharonov, D. Bohm, Further considerations on electromagnetic potentials in the quantum theory. Phys. Rev. 123 (4), 1511 (1961)
    79.R.G. Chambers, Shift of an electron interference pattern by enclosed magnetic flux. Phys. Rev. Lett. 5 (1), 3 (1960)
    80.T. Ihn, Electronic Quantum Transport in Mesoscopic Semiconductor Structures (Springer, New York, 2004)CrossRef
    81.A. Tonomura, T. Matsuda, R. Suzuki, A. Fukuhara, N. Osakabe, H. Umezaki, J. Endo, K. Shinagawa, Y. Sugita, H. Fujiwara, Observation of Aharonov-Bohm effect by electron holography. Phys. Rev. Lett. 48 (21), 1443 (1982)
    82.M.R. Poniedziałek, B. Szafran, Multisubband transport and magnetic deflection of Fermi electron trajectories in three terminal junctions and rings. J. Phys. Condens. Matter 24 (8), 085801 (2012)
    83.L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt, N.S. Wingreen, Electron transport in quantum dots, in Mesoscopic Electron Transport, ed. by L.L. Sohn, L.P. Kouwenhoven, G. Schön. NATO ASI Series, vol. 345 (Springer, Dordrecht, 1997), pp. 105–214
    84.Y. Gefen, Y. Imry, M.Y. Azbel, Quantum oscillations and the Aharonov-Bohm effect for parallel resistors. Phys. Rev. Lett. 52 (2), 129 (1984)
    85.J.U. Nöckel, A.D. Stone, Resonance line shapes in quasi-one-dimensional scattering. Phys. Rev. B 50 (23), 17415 (1994)
    86.K. Kobayashi, H. Aikawa, S. Katsumoto, Y. Iye, Tuning of the Fano effect through a quantum dot in an Aharonov-Bohm interferometer. Phys. Rev. Lett. 88 (25), 256806 (2002)
    87.K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, Y. Iye, Fano resonance in a quantum wire with a side-coupled quantum dot. Phys. Rev. B 70 (3), 035319 (2004)
    88.Z.Y. Zeng, F. Claro, A. Pérez, Fano resonances and Aharonov-Bohm effects in transport through a square quantum dot molecule. Phys. Rev. B 65 (8), 085308 (2002)
    89.U. Sivan, Y. Imry, C. Hartzstein, Aharonov-Bohm and quantum Hall effects in singly connected quantum dots. Phys. Rev. B 39 (2), 1242 (1989)
    90.G. Bergmann, Weak localization in thin films: a time-of-flight experiment with conduction electrons. Phys. Rep. 107 (1), 1 (1984)
    91.S. Chakravarty, A. Schmid, Weak localization: the quasiclassical theory of electrons in a random potential. Phys. Rep. 140 (4), 193 (1986)
    92.P.A. Lee, A.D. Stone, Universal conductance fluctuations in metals. Phys. Rev. Lett. 55 (15), 1622 (1985)
  • 作者单位:Christian V. Morfonios (18)
    Peter Schmelcher (18)

    18. Center for Optical Quantum Technologies, University of Hamburg, Hamburg, Germany
  • 丛书名:Control of Magnetotransport in Quantum Billiards
  • ISBN:978-3-319-39833-4
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical Methods in Physics
    Mathematical and Computational Physics
    Astronomy, Astrophysics and Cosmology
    Atoms, Molecules, Clusters and Plasmas
    Relativity and Cosmology
    Extraterrestrial Physics and Space Sciences
    Condensed Matter
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1616-6361
  • 卷排序:927
文摘
In the Landauer-Büttiker formalism developed previously, the multiterminal transmission function of a mesoscopic device constitutes the core of the description of coherent electron transport. In this chapter it will be seen how the asymptotic scattering matrix of the system as well as spatially resolved quantities of interest such as the full scattering wave function can be formally determined and practically calculated from the system Hamiltonian. This is achieved within the Green function formalism in terms of an effective, energy-dependent and non-Hermitian Hamiltonian describing the scattering region connected to the peripheral leads. The theoretical framework is reviewed from the particular viewpoint of (planar) confinement with generic, geometrically defined asymptotic scattering channels, highlighting the involved concepts and the main observable interference effects in transmission, Fano resonances and Aharonov-Bohm oscillations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700