用户名: 密码: 验证码:
A Concordant Shift Model for Flow in Bulk Metallic Glasses
详细信息    查看全文
  • 作者:Gang Wang ; Zbigniew H. Stachurski
  • 关键词:Bulk metallic glasses ; Superplasticity ; Vacancy/atom exchange model ; Atomic concordant shifting model ; Strain rate
  • 刊名:Acta Metallurgica Sinica (English Letters)
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:29
  • 期:2
  • 页码:134-139
  • 全文大小:1,217 KB
  • 参考文献:[1]C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55, 4067 (2007)CrossRef
    [2]Y. Kawamura, T. Nakamura, A. Inoue, Scr. Mater. 39, 301 (1998)CrossRef
    [3]W.J. Kim, D.S. Ma, H.G. Jeong, Scr. Mater. 39, 1067 (2003)CrossRef
    [4]J. Lu, G. Ravichandran, W.L. Johnson, Acta Mater. 51, 3429 (2003)CrossRef
    [5]B. Gun, K.J. Laws, M. Ferry, J. Non-Cryst. Solids 352, 3896 (2006)CrossRef
    [6]J. Shen, G. Wang, J.F. Sun, Z.H. Stachurski, C. Yan, L. Ye, B.D. Zhou, Intermtallics 13, 79 (2005)CrossRef
    [7]G. Wang, I. Jackson, J.D. Fitz Gerald, J. Shen, Z.H. Stachurski, J. Non-Cryst. Solids 354, 1575 (2008)CrossRef
    [8]G. Wang, J. Shen, J.F. Sun, Y.J. Huang, J. Zou, Z.P. Lu, Z.H. Stachurski, B.D. Zhou, J. Non-Cryst. Solids 351, 209 (2005)CrossRef
    [9]Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Science 315, 1835 (2007)CrossRef
    [10]R.C. Giffkins, Scr. Metall. 7, 27 (1973)CrossRef
    [11]J.W. Edington, K.N. Melton, C.P. Cutler, Prog. Mater Sci. 21, 61 (1976)CrossRef
    [12]T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics (Cambridge University Press, Cambridge, 1997), p. 240CrossRef
    [13]V.A. Levashov, J.R. Morris, T. Egami, Phys. Rev. Lett. 106, 115703 (2011)CrossRef
    [14]F. Spaepen, Acta Metall. 25, 407 (1977)CrossRef
    [15]H. Nakajima, T. Kojima, K. Nonaka, T. Zhang, A. Inoue, N. Nishiyama, Mater. Res. Soc. Symp. Proc. 644, L2.2.1 (2001)
    [16]H. Eyring, J. Chem. Phys. 4, 283 (1936)CrossRef
    [17]C.Y. Lee, T.R. Welberry, Z.H. Stachurski, Acta Mater. 58, 615 (2010)CrossRef
    [18]J.D. Eshelby, Proc. R. Soc. A 241, 376 (1957)CrossRef
    [19]A.R. Yavari, A. Le Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M. Di Michiel, A. Kvick, Acta Mater. 53, 1611 (2005)CrossRef
    [20]R. Ekambaram, P. Thamburaja, N. Nikabdullah, Mech. Mater. 40, 487 (2008)CrossRef
    [21]M. Heggen, F. Spaepen, M. Feuerbacher, J. Appl. Phys. 97, 033506 (2005)CrossRef
    [22]J.C. Ye, J. Lu, C.T. Liu, Q. Wang, Y. Yang, Nat. Mater. 9, 619 (2010)CrossRef
    [23]A.S. Argon, Acta Metall. 27, 47 (1979)CrossRef
    [24]P. Thamburaja, N. Nikabdullah, Scr. Mater. 65, 751 (2011)CrossRef
    [25]G. Wang, N. Mattern, J. Bednarčík, R. Li, B. Zhang, J. Eckert, Acta Mater. 60, 3074 (2012)CrossRef
    [26]K. Trachenko, V.V. Brazhkin, J. Phys.: Condens. Matter 21, 425104 (2009)
    [27]W. Dmowski, T. Iwashita, C.P. Chuang, J. Almer, T. Egami, Phys. Rev. Lett. 105, 205502 (2010)CrossRef
    [28]Z.Y. Liu, G. Wang, K.C. Chan, J.L. Ren, X.L. Bian, Y.J. Huang, X.H. Xu, D.S. Zhang, Y.L. Gao, Q.J. Zhai, J. Appl. Phys. 114, 033520 (2013)CrossRef
    [29]Z. Wang, B.A. Sun, H.Y. Bai, W.H. Wang, Nat. Commun. 5, 5823 (2014)CrossRef
    [30]B.A. Sun, Z.Y. Liu, Y. Yang, C.T. Liu, Appl. Phys. Lett. 105, 091904 (2014)CrossRef
    [31]Q. Wang, S.T. Zhang, Y. Yang, Y.D. Dong, C.T. Liu, J. Lu, Nat. Commun. 6, 7876 (2015)CrossRef
    [32]B.A. Sun, W.H. Wang, Prog. Mater Sci. 74, 211 (2015)CrossRef
  • 作者单位:Gang Wang (1)
    Zbigniew H. Stachurski (2)

    1. Laboratory for Microstructures, Shanghai University, Shanghai, 20044, China
    2. Research School of Engineering, The Australian National University, Canberra, Australia
  • 刊物主题:Metallic Materials; Spectroscopy/Spectrometry; Organometallic Chemistry; Tribology, Corrosion and Coatings; Nanotechnology; Characterization and Evaluation of Materials;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2194-1289
文摘
The homogeneous plastic flow in bulk metallic glasses (BMGs) must be elucidated by an appropriate atomistic mechanism. It is proposed that a so-called concordant shifting model, based on rearrangements of five-atom subclusters, can describe the plastic strain behaviour of BMGs in a temperature range from room temperature to the supercooled liquid region. To confirm the effectiveness of the atomic concordant shifting model, a comparative investigation between the vacancy/atom model and the concordant shifting model is carried out based on the estimation of the strain rate deduced from two models. Our findings suggest that the atomic concordant shifting model rather than the vacancy/atom exchange model can well predict the large strain rate in the superplasticity of BMGs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700