用户名: 密码: 验证码:
Microhabitat influence on chironomid community structure and stable isotope signatures in West Greenland lakes
详细信息    查看全文
  • 作者:Nina S. Reuss (1)
    Ladislav Hamerlík (1) (2)
    Gaute Velle (3) (6)
    Anders Michelsen (4) (5)
    Ole Pedersen (1)
    Klaus P. Brodersen (1)
  • 关键词:Arctic ; Lake types ; Habitats ; Stable δ 13C isotopes ; Chironomidae
  • 刊名:Hydrobiologia
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:730
  • 期:1
  • 页码:59-77
  • 全文大小:1,985 KB
  • 参考文献:1. Anderson, N. J., K. P. Brodersen, D. B. Ryves, S. McGowan, L. S. Johansson, E. Jeppesen & M. J. Leng, 2008. Climate versus in-lake processes as controls on the development of community structure in a low-Arctic lake (South-West Greenland). Ecosystems 11: 307-24. CrossRef
    2. Bade, D. L., S. R. Carpenter, J. J. Cole, P. C. Hanson & R. H. Hesslein, 2004. Controls of / δ 13C-DIC in lakes: geochemistry, lake metabolism, and morphometry. Limnology and Oceanography 49: 1160-172. CrossRef
    3. Battarbee, R. W., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews 19: 107-24. CrossRef
    4. Berg, M. B., 1995. Larval food and feeding behavior. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and Ecology of Non-biting Midges. Chapman and Hall, London: 136-68. CrossRef
    5. Bigler, C., I. Larocque, S. M. Peglar, H. J. B. Birks & R. I. Hall, 2002. Quantitative multiproxy assessment of long-term patterns of holocene environmental change from a small lake near Abisko, Northern Sweden. Holocene 12: 481-96. CrossRef
    6. Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623-632. CrossRef
    7. Bonilla, S., V. Villeneuve & W. F. Vincent, 2005. Benthic and planktonic algal communities in a high Arctic Lake: pigment structure and contrasting responses to nutrient enrichment. Journal of Phycology 41: 1120-130. CrossRef
    8. Bonilla, S., M. Rautio & W. F. Vincent, 2009. Phytoplankton and phytobenthos pigment strategies: implications for algal survival in the changing Arctic. Polar Biology 32: 1293-303. CrossRef
    9. Brodersen, K. P., 2007. Chironomids (Diptera) from sub-saline lakes in West Greenland: diversity, assemblage structure and respiratory adaptation. In Andersen, T. (ed.), Contributions to the Systematics and Ecology of Aquatic Diptera -A Tribute to Ole A. S?ther. The Caddis Press, Columbus: 61-8.
    10. Brodersen, K. P. & N. J. Anderson, 2000. Subfossil insect remains (Chironomidae) and lake-water temperature inference in the Sisimiut-Kangerlussuaq region, Southern West Greenland. Geology of Greenland Survey Bulletin 186: 78-2.
    11. Brodersen, K. P. & N. J. Anderson, 2002. Distrubution of chironomids (Diptera) in low Arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biology 47: 1137-157. CrossRef
    12. Brodersen, K. P. & R. Quinlan, 2006. Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quaternary Science Reviews 25: 1995-012. CrossRef
    13. Brodersen, K. P., C. Lindegaard & N. J. Anderson, 2001a. Holocene temperature and environmental reconstruction from lake sediments in the S?ndre Str?mfjord region, Southern West Greenland. Geology of Greenland Survey Bulletin 189: 59-4.
    14. Brodersen, K. P., B. V. Odgaard, O. Vestergaard & N. J. Anderson, 2001b. Chironomid stratigraphy in the shallow and eutrophic Lake Sobygaard, Denmark: chironomid–macrophyte co-occurrence. Freshwater Biology 46: 253-67. CrossRef
    15. Brodersen, K. P., O. Pedersen, C. Lindegaard & K. Hamburger, 2004. Chironomids (Diptera) and oxy-regulatory capacity: an experimental approach to paleolimnological interpretation. Limnology and Oceanography 49: 1549-559. CrossRef
    16. Brooks, S. J., P. G. Langdon & O. Heiri, 2007. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London.
    17. Chetelat, J., L. Cloutier & M. Amyot, 2010. Carbon sources for lake food webs in the Canadian High Arctic and other regions of Arctic North America. Polar Biology 33: 1111-123. CrossRef
    18. Clarke, K. R. & R. H. Green, 1988. Statistical design and analysis for a biological effects study. Marine Ecology-Progress Series 46: 213-26. CrossRef
    19. Danks, H. V., 1981. Arctic arthropods: a review of systematics and ecology with particular reference to the North American fauna. Entomological Society of Canada, Ottawa.
    20. Eggermont, H. & O. Heiri, 2012. The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biological Reviews 87: 430-56. CrossRef
    21. France, R. L., 1995. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnology and Oceanography 40: 1310-313. CrossRef
    22. Hecky, R. E. & R. H. Hesslein, 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14: 631-53. CrossRef
    23. Heggen, M. P., H. H. Birks & N. Anderson, 2010. Long-term ecosystem dynamics of a small lake and its catchment in west Greenland. Holocene 20: 1207-222. CrossRef
    24. Heiri, O., 2004. Within-lake variability of subfossil chironomid assemblages in shallow Norwegian lakes. Journal of Paleolimnology 32: 67-4. CrossRef
    25. Jeffrey, S. W., R. F. C. Mantoura & T. Bj?rnland, 1997. Data for the identification of 47 key phytoplankton pigments. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds), Phytoplankton Pigments in Oceanography. UNESCO, Paris: 447-59.
    26. Jones, R. I., C. E. Carter, A. Kelly, S. Ward, D. J. Kelly & J. Grey, 2008. Widespread contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae. Ecology 89: 857-64. CrossRef
    27. Karlsson, J. & P. Bystr?m, 2005. Littoral energy mobilization dominates energy supply for top consumers in subarctic lakes. Limnology and Oceanography 50: 538-43. CrossRef
    28. Kling, G. W., B. Fry & W. J. Obrien, 1992. Stable isotopes and planktonic trophic structure in Arctic Lakes. Ecology 73: 561-66. CrossRef
    29. Kurek, J. & L. C. Cwynar, 2009. Effects of within-lake gradients on the distribution of fossil chironomids from maar lakes in western Alaska: implications for environmental reconstructions. Hydrobiologia 623: 37-2. CrossRef
    30. Langton, P. H., 1991. A key to pupal exuviae of West Palaearctic Chironomidae. Private Publication, Huntingdon.
    31. Lindegaard, C., 1992. Zoobenthos ecology of Thingvallavatn -vertical-distribution, abundance, population-dynamics and production. Oikos 64: 257-04. CrossRef
    32. Madsen, T. V. & K. Sand-Jensen, 1991. Photosynthetic carbon assimilation in aquatic macrophytes. Aquatic Botany 41: 5-0. CrossRef
    33. McGowan, S., D. B. Ryves & N. J. Anderson, 2003. Holocene records of effective precipitation in West Greenland. The Holocene 13: 239-49. CrossRef
    34. McGowan, S., R. K. Juhler & N. J. Anderson, 2008. Autotrophic response to lake age, conductivity and temperature in two West Greenland lakes. Journal of Paleolimnology 39: 301-17. CrossRef
    35. Moog, O. 1995. Fauna Aquatica Austriaca. A Comprehensive Species Inventory of Austrian Aquatic Organisms with Ecological Notes. Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Wien.
    36. Moore, J. W., 1981. Factors influencing the species composition, distribution and abundance of benthic invertebrates in the profundal zone of a eutrophic Northern Lake. Hydrobiologia 83: 505-10. CrossRef
    37. Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293-20. CrossRef
    38. Pfennig, N., 1989. Ecology of phototrophic purple and green sulfur bacteria. In Schlegel, H. G. & B. Bowien (eds), Autotrophic Bacteria. Science Tech Publishing, Madison: 97-16.
    39. Pinder, L. C. V., 1980. Spatial distribution of Chironomidae in an English chalk stream. In Murray, D. A. (ed.), Chironomidae. Ecology, Systematics, Cytology and Physiology. Proceedings of the VIIth international Chironomid symposium. Pergamon Press, Oxford: 153-61.
    40. Pinder, L. C. V., 1986. Biology of freshwater Chironomidae. Annual Review of Entomology 31: 1-3. CrossRef
    41. Pinder, L. C. V., 1992. Biology of epiphytic Chironomidae (Diptera, Nematocera) in chalk streams. Hydrobiologia 248: 39-1. CrossRef
    42. Pinder, L. C. V., 1995. The habitats of chironomid larvae. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: biology and ecology of non-biting midges. Chapman and Hall, London: 107-35. CrossRef
    43. Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703-18. CrossRef
    44. Post, D. M., C. A. Layman, D. Arrington, G. Takimoto, J. Quattrochi & C. G. Montana, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179-89. CrossRef
    45. Premke, K., J. Karlsson, K. Steger, C. Gudasz, E. von Wachenfeldt & L. J. Tranvik, 2010. Stable isotope analysis of benthic fauna and their food sources in boreal lakes. Journal of the North American Benthological Society 29: 1339-348. CrossRef
    46. Rautio, M. & W. F. Vincent, 2007. Isotopic analysis of the source of organic carbon for zooplankton in shallow Subarctic and Arctic waters. Ecography 30: 77-7. CrossRef
    47. Reuss, N. & D. J. Conley, 2005. Effects of sediment storage conditions on pigment analyses. Limnology and Oceanography: Methods 3: 477-87. CrossRef
    48. Reuss, N. S., N. J. Anderson, S. C. Fritz & G. L. Simpson, 2013a. Responses of microbial phototrophs to late-Holocene environmental forcing of lakes in south-west Greenland. Freshwater Biology 58: 690-04. CrossRef
    49. Reuss, N. S., L. Hamerlik, G. Velle, A. Michelsen, O. Pedersen & K. P. Brodersen, 2013b. Stable isotopes reveal that chironomids occupy several trophic levels within West Greenland lakes: implications for food web studies. Limnology and Oceanography 58: 1023-034. CrossRef
    50. Rosén, P., U. Segerstrom, L. Eriksson & I. Renberg, 2003. Do diatom, chironomid, and pollen records consistently infer Holocene July air temperature? A comparison using sediment cores from four alpine lakes in northern Sweden. Arctic Antarctic and Alpine Research 35: 279-90. CrossRef
    51. Saeby, R. M. H. & P. A. Henderson, 2004. Commuity Analysis Package 3.0. Pisces Conservation Ltd, Lymington.
    52. Saros, J., 2009. Integrating neo- and paleolimnological approaches to refine interpretations of environmental change. Journal of Paleolimnology 41: 243-52. CrossRef
    53. Strickland, J. D. H. & T. R. Parsons, 1968. A Practical Handbook of Seawater Analysis. Bulletin No. 167. Fisheries Research Board of Canada, Ottawa.
    54. ter Braak, C. J. F. & P. Smilauer, 2012. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0. Microcomputer Power, Ithaca.
    55. Tokeshi, M. & L. C. V. Pinder, 1985. Microhabitats of stream invertebrates on 2 submersed macrophytes with contrasting leaf morphology. Holarctic Ecology 8: 313-19.
    56. Tolonen, K. T., H. Hamalainen, I. J. Holopainen & J. Karjalainen, 2001. Influences of habitat type and environmental variables on littoral macroinvertebrate communities in a large lake system. Archiv fur Hydrobiologie 152: 39-7.
    57. Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H. H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to Green Lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408-418. CrossRef
    58. van Hardenbroek, M., A. Lotter, D. Bastviken, N. Duc & O. Heiri, 2012. Relationship between / δ 13C of chironomid remains and methane flux in Swedish lakes. Freshwater Biology 57: 166-77. CrossRef
    59. Vander Zanden, M. J. & J. B. Rasmussen, 1999. Primary consumer / δ 13C and / δ 15N and the trophic position of aquatic consumers. Ecology 80: 1395-404. CrossRef
    60. Velle, G., S. J. Brooks, H. J. B. Birks & E. Willassen, 2005. Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quaternary Science Reviews 24: 1429-462. CrossRef
    61. Velle, G., A. E. Bjune, J. Larsen & H. J. B. Birks, 2010a. Holocene climate and environmental history of Brurskardstj?rni, a lake in the catchemnt of ?vre Heimdalsvatn, south-central Norway. Hydrobiologia 642: 13-4. CrossRef
    62. Velle, G., K. P. Brodersen, H. J. B. Birks & E. Willassen, 2010b. Midges as quantitative temperature indicator species: lessons for palaeoecology. Holocene 20: 989-002. CrossRef
    63. Velle, G., K. P. Brodersen, H. J. B. Birks & E. Willassen, 2012a. Inconsistent results should not be overlooked: a reply to Brooks et al. 2012. The Holocene 22: 1501-508.
    64. Velle, G., R. J. Telford, O. Heiri, J. Kurek & H. Birks, 2012b. Testing intra-site transfer functions: an example using chironomids and water depth. Journal of Paleolimnology 48: 545-58. CrossRef
    65. Verschuren, D., J. Tibby, K. Sabbe & N. Roberts, 2000. Effects of depth, salinity, and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81: 164-82. CrossRef
    66. Wiederholm, T., 1983. Chironomidae of the Holarctic region keys and diagnoses. Part I: larvae. Entomologica Scandinavica Supplements 19: 457.
    67. Wiederholm, T., 1986. Chironomidae of the Holarctic region keys and diagnoses. Part II: pupae. Entomologica scandinavica Supplements 28: 147-98.
    68. Williams, W. D., 1991. Comments on the so-called salt lakes of Greenland. Hydrobiologia 210: 67-4.
    69. Williams, W. D., A. J. Boulton & R. G. Taaffe, 1990. Salinity as a determinant of salt lake fauna -a question of scale. Hydrobiologia 197: 257-66. CrossRef
    70. Zhang, E., R. Jones, A. Bedford, P. Langdon & H. Tang, 2007. A chironomid-based salinity inference model from lakes on the Tibetan Plateau. Journal of Paleolimnology 38: 477-91. CrossRef
  • 作者单位:Nina S. Reuss (1)
    Ladislav Hamerlík (1) (2)
    Gaute Velle (3) (6)
    Anders Michelsen (4) (5)
    Ole Pedersen (1)
    Klaus P. Brodersen (1)

    1. Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
    2. Faculty of Natural Sciences, Matthias Belius University, Banská Bystrica, Slovakia
    3. Uni Environment, Uni Research, Bergen, Norway
    6. Department of Biology, University of Bergen, Bergen, Norway
    4. Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
    5. Center for Permafrost, University of Copenhagen, Copenhagen, Denmark
  • ISSN:1573-5117
文摘
Most functional feeding types are represented within the species rich group of aquatic chironomids. Thus, we hypothesized that different lake types and microhabitats within lakes would (1) host specific chironomid communities and (2) that the individual communities would show specific δ 13C stable isotope signatures reflecting the prevailing origin of food source. To test our hypotheses, five lakes in southwest Greenland were investigated at a high taxonomic resolution and with detailed information on δ 13C signature of the chironomids and of individual microhabitats (macrophytes, sediment, stones, and profundal). We found that there was a significant difference in δ 13C between the chironomid assemblages of freshwater lakes and oligosaline lakes, while assemblages of the littoral microhabitats did not differ significantly. The δ 13C of chironomids reflected the wide variety of habitat signals, particularly in the freshwater lakes. Our results indicate that many chironomid taxa are ubiquitous and are found in several microhabitats, suggesting that they can adjust their feeding strategy according to the habitat. The implication is that chironomid assemblage composition has only limited use as indicator of littoral microhabitats in the Arctic. On the other hand, the δ 13C signature of fossil chironomids might have a potential as indicator of microhabitats in freshwater lakes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700