用户名: 密码: 验证码:
Pathway analysis of genome-wide data improves warfarin dose prediction
详细信息    查看全文
  • 作者:Roxana Daneshjou (1)
    Nicholas P Tatonetti (2)
    Konrad J Karczewski (1) (3)
    Hersh Sagreiya (1)
    Stephane Bourgeois (4)
    Katarzyna Drozda (5)
    James K Burmester (6)
    Tatsuhiko Tsunoda (7)
    Yusuke Nakamura (7)
    Michiaki Kubo (7)
    Matthew Tector (8)
    Nita A Limdi (9)
    Larisa H Cavallari (5)
    Minoli Perera (10)
    Julie A Johnson (11)
    Teri E Klein (1)
    Russ B Altman (1) (12)
  • 刊名:BMC Genomics
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:14
  • 期:3-supp
  • 全文大小:716KB
  • 参考文献:1. Pearson TA, Manolio TA: How to interpret a genome-wide association study. / JAMA 2008, 299:1335鈥?4. CrossRef
    2. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, Limdi NA, Page D, Roden DM, Wagner MJ, Caldwell MD, Johnson JA: Estimation of the warfarin dose with clinical and pharmacogenetic data. / N Engl J Med 2009, 360:753鈥?4. CrossRef
    3. Gage BF, Lesko LJ: Pharmacogenetics of warfarin: regulatory, scientific, and clinical issues. / J Thromb Thrombolysis 2008, 25:45鈥?1. CrossRef
    4. Kirley K, Qato DM, Kornfield R, Stafford RS, Alexander GC: National trends in oral anticoagulant use in the United States, 2007 to 2011. / Circ Cardiovasc Qual Outcomes 5:615鈥?1.
    5. Wysowski DK, Nourjah P, Swartz L: Bleeding complications with warfarin use: a prevalent adverse effect resulting in regulatory action. / Arch Intern Med 2007, 167:1414鈥?. CrossRef
    6. D'Andrea G, D'Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, Grandone E, Margaglione M: A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. / Blood 2005, 105:645鈥?. CrossRef
    7. Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, Anderson JL, Kimmel SE, Lee MT, Pirmohamed M, Wadelius M, Klein TE, Altman RB: Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. / Clin Pharmacol Ther 90:625鈥?.
    8. Aithal GP, Day CP, Kesteven PJ, Daly AK: Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. / Lancet 1999, 353:717鈥?. CrossRef
    9. Gage BF, Eby C, Milligan PE, Banet GA, Duncan JR, McLeod HL: Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. / Thromb Haemost 2004, 91:87鈥?4.
    10. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, Milligan PE, Grice G, Lenzini P, Rettie AE, Aquilante CL, Grosso L, Marsh S, Langaee T, Farnett LE, Voora D, Veenstra DL, Glynn RJ, Barrett A, McLeod HL: Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. / Clin Pharmacol Ther 2008, 84:326鈥?1. CrossRef
    11. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F: The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. / Blood 2005, 106:2329鈥?3. CrossRef
    12. Roper N, Storer B, Bona R, Fang M: Validation and comparison of pharmacogenetics-based warfarin dosing algorithms for application of pharmacogenetic testing. / J Mol Diagn 12:283鈥?1.
    13. Shaw PB, Donovan JL, Tran MT, Lemon SC, Burgwinkle P, Gore J: Accuracy assessment of pharmacogenetically predictive warfarin dosing algorithms in patients of an academic medical center anticoagulation clinic. / J Thromb Thrombolysis 30:220鈥?.
    14. Scott SA, Khasawneh R, Peter I, Kornreich R, Desnick RJ: Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups. / Pharmacogenomics 11:781鈥?1.
    15. Scott SA, Jaremko M, Lubitz SA, Kornreich R, Halperin JL, Desnick RJ: CYP2C9*8 is prevalent among African-Americans: implications for pharmacogenetic dosing. / Pharmacogenomics 2009, 10:1243鈥?5. CrossRef
    16. Kudzi W, Dodoo AN, Mills JJ: Characterisation of CYP2C8, CYP2C9 and CYP2C19 polymorphisms in a Ghanaian population. / BMC Med Genet 2009, 10鈥?24.
    17. Cirulli ET, Goldstein DB: Uncovering the roles of rare variants in common disease through whole-genome sequencing. / Nat Rev Genet 11:415鈥?5.
    18. Sagreiya H, Berube C, Wen A, Ramakrishnan R, Mir A, Hamilton A, Altman RB: Extending and evaluating a warfarin dosing algorithm that includes CYP4F2 and pooled rare variants of CYP2C9. / Pharmacogenet Genomics 20:407鈥?3.
    19. Moore JH, Asselbergs FW, Williams SM: Bioinformatics challenges for genome-wide association studies. / Bioinformatics 26:445鈥?5.
    20. Cosgun E, Limdi NA, Duarte CW: High-dimensional pharmacogenetic prediction of a continuous trait using machine learning techniques with application to warfarin dose prediction in African Americans. / Bioinformatics 27:1384鈥?.
    21. Wang K, Li M, Hakonarson H: Analysing biological pathways in genome-wide association studies. / Nat Rev Genet 11:843鈥?4.
    22. Walters R, Laurin C, Lubke GH: An integrated approach to reduce the impact of minor allele frequency and linkage disequilibrium on variable importance measures for genome-wide data. / Bioinformatics 28:2615鈥?3.
    23. Khatri P, Sirota M, Butte AJ: Ten years of pathway analysis: current approaches and outstanding challenges. / PLoS Comput Biol 8:e1002375.
    24. Ritchie MD: Using prior knowledge and genome-wide association to identify pathways involved in multiple sclerosis. / Genome Med 2009, 1鈥?5.
    25. Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, Pelletier D, Wu W, Uitdehaag BM, Kappos L, Polman CH, Matthews PM, Hauser SL, Gibson RA, Oksenberg JR, Barnes MR: Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. / Hum Mol Genet 2009, 18:2078鈥?0. CrossRef
    26. Torkamani A, Topol EJ, Schork NJ: Pathway analysis of seven common diseases assessed by genome-wide association. / Genomics 2008, 92:265鈥?2. CrossRef
    27. Fridley BL, Batzler A, Li L, Li F, Matimba A, Jenkins GD, Ji Y, Wang L, Weinshilboum RM: Gene set analysis of purine and pyrimidine antimetabolites cancer therapies. / Pharmacogenet Genomics 21:701鈥?2.
    28. Yandell M, Huff C, Hu H, Singleton M, Moore B, Xing J, Jorde LB, Reese MG: A probabilistic disease-gene finder for personal genomes. / Genome Res 21:1529鈥?2.
    29. Madsen BE, Browning SR: A groupwise association test for rare mutations using a weighted sum statistic. / PLoS Genet 2009, 5:e1000384. CrossRef
    30. Tatonetti NP, Dudley JT, Sagreiya H, Butte AJ, Altman RB: An integrative method for scoring candidate genes from association studies: application to warfarin dosing. / BMC Bioinformatics 11(Suppl 9):S9.
    31. Moskvina V, Schmidt KM, Vedernikov A, Owen MJ, Craddock N, Holmans P, O'Donovan MC: Permutation-based approaches do not adequately allow for linkage disequilibrium in gene-wide multi-locus association analysis. / Eur J Hum Genet 20:890鈥?.
    32. Gerstein M, Sonnhammer EL, Chothia C: Volume changes in protein evolution. / J Mol Biol 1994, 236:1067鈥?8. CrossRef
    33. Cooper GM, Johnson JA, Langaee TY, Feng H, Stanaway IB, Schwarz UI, Ritchie MD, Stein CM, Roden DM, Smith JD, Veenstra DL, Rettie AE, Rieder MJ: A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. / Blood 2008, 112:1022鈥?. CrossRef
    34. Isma N, Svensson PJ, Gottsater A, Lindblad B: Prospective analysis of risk factors and distribution of venous thromboembolism in the population-based Malmo Thrombophilia Study (MATS). / Thromb Res 2009, 124:663鈥?. CrossRef
    35. Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, Chen CH, Motsinger-Reif A, Sagreiya H, Liu N, Wu AH, Gage BF, Jorgensen A, Pirmohamed M, Shin JG, Suarez-Kurtz G, Kimmel SE, Johnson JA, Klein TE, Wagner MJ: Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. / Blood 115:3827鈥?4.
    36. Perera MA, Gamazon E, Cavallari LH, Patel SR, Poindexter S, Kittles RA, Nicolae D, Cox NJ: The missing association: sequencing-based discovery of novel SNPs in VKORC1 and CYP2C9 that affect warfarin dose in African Americans. / Clin Pharmacol Ther 89:408鈥?5.
    37. Cavallari LH, Perera M, Wadelius M, Deloukas P, Taube G, Patel SR, Aquino-Michaels K, Viana MA, Shapiro NL, Nutescu EA: Association of the GGCX (CAA)16/17 repeat polymorphism with higher warfarin dose requirements in African Americans. / Pharmacogenet Genomics 22:152鈥?.
    38. McDonagh EM, Whirl-Carrillo M, Garten Y, Altman RB, Klein TE: From pharmacogenomic knowledge acquisition to clinical applications: the PharmGKB as a clinical pharmacogenomic biomarker resource. / Biomark Med 5:795鈥?06.
    39. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, Klein TE: Pharmacogenomics knowledge for personalized medicine. / Clin Pharmacol Ther 92:414鈥?.
    40. Liu Y, Jeong H, Takahashi H, Drozda K, Patel SR, Shapiro NL, Nutescu EA, Cavallari LH: Decreased warfarin clearance associated with the CYP2C9 R150H (*8) polymorphism. / Clin Pharmacol Ther 91:660鈥?.
    41. MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, Jostins L, Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang ZD, Conrad DF, Lunter G, Zheng H, Ayub Q, DePristo MA, Banks E, Hu M, Handsaker RE, / et al.: A systematic survey of loss-of-function variants in human protein-coding genes. / Science 335:823鈥?.
    42. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, Hubbard J, Turpaz Y, Langaee TY, Eby C, King CR, Brower A, Schmelzer JR, Glurich I, Vidaillet HJ, Yale SH, Qi Zhang K, Berg RL, Burmester JK: CYP4F2 genetic variant alters required warfarin dose. / Blood 2008, 111:4106鈥?2. CrossRef
    43. Feero WG: Genetic thrombophilia. / Prim Care 2004, 31:685鈥?09. xi CrossRef
    44. Carcao MD: The diagnosis and management of congenital hemophilia. / Semin Thromb Hemost 38:727鈥?4.
    45. Vanden Hoek AL, Talbot K, Carter IS, Vickars L, Carter CJ, Jackson SC, Macgillivray RT, Pryzdial EL: Coagulation factor X Arg386 specifically affects activation by the intrinsic pathway: a novel patient mutation. / J Thromb Haemost 10:2613鈥?.
    46. Limdi NA, Arnett DK, Goldstein JA, Beasley TM, McGwin G, Adler BK, Acton RT: Influence of CYP2C9 and VKORC1 on warfarin dose, anticoagulation attainment and maintenance among European-Americans and African-Americans. / Pharmacogenomics 2008, 9:511鈥?6. CrossRef
  • 作者单位:Roxana Daneshjou (1)
    Nicholas P Tatonetti (2)
    Konrad J Karczewski (1) (3)
    Hersh Sagreiya (1)
    Stephane Bourgeois (4)
    Katarzyna Drozda (5)
    James K Burmester (6)
    Tatsuhiko Tsunoda (7)
    Yusuke Nakamura (7)
    Michiaki Kubo (7)
    Matthew Tector (8)
    Nita A Limdi (9)
    Larisa H Cavallari (5)
    Minoli Perera (10)
    Julie A Johnson (11)
    Teri E Klein (1)
    Russ B Altman (1) (12)

    1. Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
    2. Department of Biomedical Informatics, Columbia University, New York, NY, 10032, USA
    3. Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
    4. Wellcome Trust Sanger Institute, Hinxton, UK
    5. Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL, 60612, USA
    6. Clinical Research Center, Marshfield Clinic Research Foundation, Marshfield, WI, 54449, USA
    7. Research Group for Medical Informatics, Center for Genomic Medicine, RIKEN, Tokyo, Japan
    8. Aurora St. Luke鈥檚 Medical Center, Milwaukee, WI, USA
    9. Department of Neurology, University of Alabama at Birmingham, Kragujevac, AL, 35294, USA
    10. Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
    11. Department of Pharmacotherapy and Translational Research, University of Florida, Gainsville, FL, 32610, USA
    12. Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
文摘
Background Many genome-wide association studies focus on associating single loci with target phenotypes. However, in the setting of rare variation, accumulating sufficient samples to assess these associations can be difficult. Moreover, multiple variations in a gene or a set of genes within a pathway may all contribute to the phenotype, suggesting that the aggregation of variations found over the gene or pathway may be useful for improving the power to detect associations. Results Here, we present a method for aggregating single nucleotide polymorphisms (SNPs) along biologically relevant pathways in order to seek genetic associations with phenotypes. Our method uses all available genetic variants and does not remove those in linkage disequilibrium (LD). Instead, it uses a novel SNP weighting scheme to down-weight the contributions of correlated SNPs. We apply our method to three cohorts of patients taking warfarin: two European descent cohorts and an African American cohort. Although the clinical covariates and key pharmacogenetic loci for warfarin have been characterized, our association metric identifies a significant association with mutations distributed throughout the pathway of warfarin metabolism. We improve dose prediction after using all known clinical covariates and pharmacogenetic variants in VKORC1 and CYP2C9. In particular, we find that at least 1% of the missing heritability in warfarin dose may be due to the aggregated effects of variations in the warfarin metabolic pathway, even though the SNPs do not individually show a significant association. Conclusions Our method allows researchers to study aggregative SNP effects in an unbiased manner by not preselecting SNPs. It retains all the available information by accounting for LD-structure through weighting, which eliminates the need for LD pruning.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700