用户名: 密码: 验证码:
Effect of host plants on fitness traits and detoxifying enzymes activity of Helopeltis theivora, a major sucking insect pest of tea
详细信息    查看全文
  • 作者:Dhiraj Saha (1)
    Ananda Mukhopadhyay (1)
    Min Bahadur (2)
  • 关键词:Alternative host ; Camellia sinensis ; Cytochrome P450 ; Esterases ; Glutathione S ; transferases ; Helopeltis theivora ; Mikania micrantha ; Monooxygenases ; Psidium guajava ; Tea pest
  • 刊名:Phytoparasitica
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:40
  • 期:5
  • 页码:433-444
  • 全文大小:347KB
  • 参考文献:1. Aldridge, W. N. (1993). The esterases: perspectives and problems. / Chemico-Biological Interactions, 87, 5-3. CrossRef
    2. Anon. (1994). / Pests of tea in North-East India and their control. Memorandum No. 27, Tocklai Experimental Station. Jorhat, Assam, India: Tocklai Experimental Station.
    3. Awang, A., Muhamad, R., & Chong, K. K. (1988). Comparative merits of cocoa pod and shoot as food sources of the mired / Helopeltis theobromae Miller. / The Planter, 64, 100-04.
    4. Awmack, C. S., & Leather, S. R. (2002). Host plant quality and fecundity in herbivorous insects. / Annual Review of Entomology, 47, 817-44. CrossRef
    5. Banerjee, T. C., & Hoque, N. (1985). Influence of host plants on development, fecundity and egg hatchability of the arctiid moth / Diacrisia casignetum. / Entomologia Experimentalis et Applicata, 37, 193-98. CrossRef
    6. Berenbaum, M. R., Zangerl, A. R., & Nitao, J. K. (1986). Constraints on chemical evolution: wild parsnip and the parsnip webworm. / Evolution, 40, 1215-228. CrossRef
    7. Berry, R. E., Yu, S. J., & Terriere, L. C. (1980). Influence of host plants on insecticide metabolism and management of variegated cutworm. / Journal of Economic Entomology, 73, 771-74.
    8. Brattsten, L. B. (1979). Ecological significance of mixed-function oxidations. / Drug Metabolism Review, 10, 35-8. CrossRef
    9. Brattsten, L. B. (1983). Cytochrome P-450 involvement in the interactions between plant terpenes and insect herbivores. In P. A. Hedin (Ed.), / Plant resistance to insects (pp. 173-95). Washington, DC: American Chemical Society. CrossRef
    10. Brattsten, L. B. (1988). Potential role of plant allelochemicals in the development of insecticide resistance. In P. Barbosa & D. K. Letourneau (Eds.), / Novel aspects of insect–plant interactions (pp. 313-48). New York, NY: John Wiley & Sons.
    11. Brattsten, L. B., Wilkinson, C. F., & Eisner, T. (1977). Herbivore–plant interactions: mixed function oxidases and secondary plant substances. / Science, 196, 1349-352. CrossRef
    12. Brattsten, L. B., Evans, C. K., Bonetti, S., & Zalkow, L. H. (1984). Induction by carrot allelochemicals of insecticide-metabolizing enzymes in the southern armyworm ( / Spodoptera eridania). / Comparative Biochemistry and Physiology, 77, 29-7.
    13. Brogdon, W. G., McAllister, J. C., & Vulule, J. M. (1997). Association of heme peroxidase activity measured in single mosquitoes identifies individuals expressing elevated oxidases for insecticide resistance. / Journal of American Mosquito Control Association, 13, 233-37.
    14. Casta?eda, L. E., Figueroa, C. C., & Nespolo, R. F. (2010). Do insect pests perform better on highly defended plants? Costs and benefits of induced detoxification defences in the aphid / Sitobion avenae. / Journal of Evolutionary Biology, 23, 2474-483. CrossRef
    15. Chareonviriyaphap, T., Rongnoparut, P., Chantarumporn, P., & Bangs, M. J. (2003). Biochemical detection of pyrethroid resistance mechanisms in / Anopheles minimus in Thailand. / Journal of Vector Ecology, 28, 108-16.
    16. Després, L., David, J. P., & Gallet, C. (2007). The evolutionary ecology of insect resistance to plant chemicals. / Trends in Ecology & Evolution, 22, 298-07. CrossRef
    17. Dominguez-Gil, O. E., & McPheron, B. A. (2000). Effect of diet on detoxification enzyme activity of / Platynota idaeusalis (Walker) (Lepidoptera: Tortricidae) larval strains. / Revista de la Facultad Agronom?a LUZ, 17, 119-38.
    18. Duke, J. A. (2001). / Handbook of phytochemical constituents of GRAS herbs and other economic plants. London, UK: CRC Press.
    19. Emlen, J. M. (1966). The role of time and energy in food preference. / The American Naturalist, 100, 611-17. CrossRef
    20. Farazmand, H., Rassoulian, G. R., & Bayat-Assadi, H. (2000). Comparative notes on growth and development of red palm weevil, / Rhynchophorus ferrugineus Oliv (Coleoptera: Curculionidae), on date palm varieties in Saravan Region. / Journal of Entomological Society of Iran, 19, 1-4.
    21. Georghiou, G. P., & Pasteur, N. (1978). Electrophoretic esterase pattern in insecticide resistant and susceptible mosquitoes. / Journal of Economic Entomology, 71, 201-05.
    22. Giles, K. L., Madden, R. D., Stockland, R., Payton, M. E., & Dillwith, J. W. (2002). Host plants affect predator fitness via the nutritional value of herbivore prey: investigation of a plant–aphid–ladybeetle system. / Biocontrol, 47, 1-1. CrossRef
    23. Gurusubramanian, G., Rahman, A., Sarmah, M., Roy, S., & Bora, S. (2008). Pesticide usage pattern in tea ecosystem, their retrospects and alternative measures. / Journal of Environmental Biology, 29, 813-26.
    24. Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. / The Journal of Biological Chemistry, 249, 7130-139.
    25. Hazarika, L. K., Bhuyan, M., & Hazarika, B. N. (2009). Insect pests of tea and their management. / Annual Review of Entomology, 54, 267-84. CrossRef
    26. Huang, H., Ye, W., Wei, X., & Zhang, C. (2009). Allelopathic potential of sesquiterpene lactones and phenolic constituents from / Mikania micrantha H. B. K. / Biochemical Systematics and Ecology, 36, 867-71. CrossRef
    27. John, S., & Graeme, D. R. (2008). Ecological factors influencing the evolution of insects-chemical defences. / Behavioural Ecology, 19, 146-53.
    28. Johnson, K. S. (1999). Comparative detoxification of plant ( / Magnolia virginiana) allelochemicals by generalist and specialist Saturniid silkmoths. / Journal of Chemical Ecology, 25, 253-69. CrossRef
    29. Ju, R. T., Wang, F., Wan, F. H., & Li, B. (2011). Effect of host plants on development and reproduction of / Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). / Journal of Pest Science, 84, 33-9. CrossRef
    30. Kennedy, G. G. (1984). 2-Tridecanone, tomatoes and / Heliothis zea: potential incompatibility of plant antibiosis with insecticidal control. / Entomologia Experimentalis et Applicata, 35, 305-11. CrossRef
    31. Krieger, R. I., Feeny, P. P., & Wilkinson, C. F. (1971). Detoxification enzymes in the guts of caterpillars: an evolutionary answer to plant defenses? / Science, 172, 579-81. CrossRef
    32. Le, G. G. (2006). Xenobiotic response in / Drosophila melanogaster: Sex dependence of P450 and GST gene induction. / Insect Biochemistry and Molecular Biology, 36, 674-82. CrossRef
    33. Lee, K. (1991). Glutathione-S-transferase activities in phytophagous insects: Induction and inhibition by plant phototoxins and phenols. / Insect Biochemistry, 21, 353-61. CrossRef
    34. Li, X., Zangerl, A. R., Schuler, M. A., & Berenbaum, M. R. (2000). Cross-resistance to α-cypermethrin after xanthotoxin ingestion in / Helicoverpa zea (Lepidoptera: Noctuidae). / Journal of Economic Entomology, 93, 18-5. CrossRef
    35. Li, X., Berenbaum, M. R., & Schuler, M. A. (2002). Plant allelochemicals differentially regulate / Helicoverpa zea cytochrome P450 genes. / Insect Molecular Biology, 11, 343-51. CrossRef
    36. Li, W., Berenbaum, M. R., & Schuler, M. A. (2003). Diversification of furanocoumarin-metabolizing cytochrome P450s in two papilionids: specificity and substrate encounter rate. / Proceedings of the National Academy of Sciences, 100, 14593-4598. CrossRef
    37. Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. / Annual Review of Entomology, 52, 231-53. CrossRef
    38. Li, J., Nesumi, A., Shimizu, K., Sakata, Y., Liang, M., He, Q., / et al. (2010). Chemosystematics of tea trees based on tea leaf polyphenols as phenetic markers. / Phytochemistry, 71, 1342-349. CrossRef
    39. Lindroth, R. L., Scriber, J. M., & Hsia, M. T. S. (1988). Chemical ecology of the tiger swallowtail: mediation of host use by phenolic glycosides. / Ecology, 69, 814-22. CrossRef
    40. Lowry, O. H., Roseburgh, N. J., Fair, A. L., & Randall, R. J. (1951). Protein measurement with the Folin Phenol reagent. / The Journal of Biological Chemistry, 193, 265-75.
    41. Mao, W., Schuler, M. A., & Berenbaum, M. R. (2007). Cytochrome P450s in / Papilio multicaudatus and the transition from oligophagy to polyphagy in the papilionidae. / Insect Molecular Biology, 16, 481-90. CrossRef
    42. Mukherjee, S. (2003). Influence of plant allelochemicals on growth rate, nutritional physiology and mid-gut esterase activity in fifth instar larvae of / Spodoptera litura (F.) (Lepidoptera: Noctuidae). / Invertebrate Reproduction and Development, 43, 125-32. CrossRef
    43. Muraleedharan, N. (1992). Pest control in Asia. In K. C. Wilson & M. N. Clifford (Eds.), / Tea: cultivation to consumption (pp. 375-12). London, UK: Chapman & Hall.
    44. Muraleedharan, N. (2007). Tea insects: ecology and control. In D. Pimentel (Ed.), / Encyclopedia of pest management (pp. 672-74). London, UK: CRC Press.
    45. Murphy, S. T., & Briscoe, B. R. (1999). The red palm weevil as an alien invasive: biology and the prospects for biological control as a component of IPM. / Biocontrol, 20, 35-6.
    46. Narwal, S. S., & Tauro, T. (1996). / Allelopathy in pests management for sustainable agriculture. Jodhpour, India: Scientific Publishers.
    47. Rattan, P. S. (1992). Pest and disease control in Africa. In K. C. Wilson & M. N. Clifford (Eds.), / Tea: cultivation to consumption (pp. 331-52). London, UK: Chapman & Hall.
    48. Riley, D. G., & Tan, W. (2003). Host plant effects on resistance to bifenthrin in silverleaf whitefly (Homoptera: Aleyrodidae). / Journal of Economic Entomology, 96, 1315-321. CrossRef
    49. Roy, S., Gurusubramanian, G., & Mukhopadhyay, A. (2010a). Neem-based integrated approaches for the management of tea mosquito bug, / Helopeltis theivora Waterhouse (Miridae: Heteroptera) in tea. / Journal of Pest Science, 83, 143-48. CrossRef
    50. Roy, S., Mukhopadhyay, A., & Gurusubramanian, G. (2010b). Field efficacy of a biopesticide prepared from / Clerodendrum viscosum Vent. (Verbenaceae) against two major tea pests in the sub Himalayan tea plantation of North Bengal, India. / Journal of Pest Science, 83, 371-77. CrossRef
    51. Saeed, R., Sayyed, A. H., Shad, S. A., & Zaka, S. M. (2010). Effect of different host plants on the fitness of diamond-back moth, / Plutella xylostella (Lepidoptera: Plutellidae). / Crop Protection, 29, 178-82. CrossRef
    52. Schoonhoven, L. M., & Meerman, J. (1978). Metabolic cost of changes in diet and neutralization of plant allelochemicals. / Entomologia Experimentalis et Applicata, 24, 689-93. CrossRef
    53. Schuler, M. A. (1996). The role of cytochrome P450 monooxygenase in plant–insect interactions. / Plant Physiology, 11, 1411-419. CrossRef
    54. Sequiera, R., & Dixon, A. F. G. (1996). Life history responses to host quality changes and competition in the Turkey-oak aphid. / European Journal of Entomology, 93, 53-8.
    55. Shao, H., Peng, S., Wei, X., Zhang, D., & Zhang, C. (2005). Potential allelochemicals from an invasive weed / Mikania micrantha H.B.K. / Journal of Chemical Ecology, 31, 1657-668. CrossRef
    56. Sheppard, C. A., & Friedman, S. (1989). Endogenous and induced monooxygenase activity in gypsy moth larvae feeding on natural and artificial diets. / Insect Biochemistry and Physiology, 10, 47-6. CrossRef
    57. Slansky, F., Jr., & Scriber, J. M. (1985). Food consumption and utilisation. In G. A. Kerkut & L. I. Gilbert (Eds.), / Comprehensive insect physiology, biochemistry and pharmacology (pp. 87-64). Oxford, UK: Pergamon Press.
    58. Soderlund, D. M., & Bloomquist, J. R. (1990). Molecular mechanism of insecticide resistance. In R. T. Roush & B. E. Tabashnik (Eds.), / Pesticide resistance in arthropods (pp. 58-6). New York, NY: Chapman and Hall. CrossRef
    59. Terriere, L. C. (1984). Induction of detoxification enzymes in insects. / Annual Review of Entomology, 29, 71-8. CrossRef
    60. van Asperen, K. (1962). A study of housefly esterases by means of a sensitive colorimetric method. / Journal of Insect Physiology, 8, 401-16. CrossRef
    61. Wang, H., Du, Y., & Song, H. (2010a). α-Glucosidase and α-amylase inhibitory activities of guava leaves. / Food Chemistry, 123, 6-3. CrossRef
    62. Wang, K. Y., Zhang, Y., Wang, H. Y., Xia, X. M., & Liu, T. X. (2010b). Influence of three diets on susceptibility of selected insecticides and activities of detoxification esterases of / Helicoverpa assulta (Lepidoptera: Noctuidae). / Pesticide Biochemistry and Physiology, 96, 51-5. CrossRef
    63. Whitham, T. G., Bailey, J. K., Schweitzer, J. A., Schuster, S. M., Bangert, R. K., & LeRoy, C. J. (2006). A framework for community and ecosystem genetics: from genes to ecosystem. / Nature Reviews Genetics, 7, 510-52. CrossRef
    64. Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. / Phytochemistry, 64, 3-9. CrossRef
    65. Wink, M., & Waterman, P. (1999). Chemotaxonomy in relation to molecular phylogeny of plants. In: M. Wink (Ed.) / Biochemistry of plant secondary metabolism. Annual Plant Reviews, / 2, 300-41: Sheffield Academic Press and CRC Press.
    66. Yang, X., Margolies, D. C., Zhu, K. Y., & Buschman, L. L. (2001). Host plant-induced changes in detoxification enzymes and susceptibility to pesticides in the two spotted spider mite (Acari: Tetranichidae). / Journal of Economic Entomology, 94, 381-87. CrossRef
    67. Yu, S. (2008). / The toxicology and biochemistry of insecticides. New York, NY: CRC Press.
    68. Yu, S. J. (1983). Induction of detoxifying enzymes by allelochemicals and host plants in the fall armyworm. / Pesticide Biochemistry and Physiology, 19, 330-36. CrossRef
    69. Yu, S. J., & Abo-Elghar, G. E. (2000). Allelochemicals as inhibitors of glutathione S-transferase in the fall armyworm. / Pesticide Biochemistry and Physiology, 68, 173-83. CrossRef
    70. Yu, S. J., Berry, R. E., & Terriere, L. C. (1979). Host-plant stimulation of detoxifying enzymes in phytophagous insects. / Pesticide Biochemistry and Physiology, 12, 280-84. CrossRef
    71. Zeng, R. S., Zhimou, W., Goudong, N., Schular, M. A., & Berenbaum, M. R. (2007). Allelochemical induction of Cytochrome P450 monooxygenases and amelioration of xenobiotic toxicity in / Helicoverpa zea. / Journal of Chemical Ecology, 33, 449-61. CrossRef
  • 作者单位:Dhiraj Saha (1)
    Ananda Mukhopadhyay (1)
    Min Bahadur (2)

    1. Entomology Research Unit, Department of Zoology, University of North Bengal, RajaRammohunpur, Siliguri, 734013, District Darjeeling, West Bengal, India
    2. Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, RajaRammohunpur, Siliguri, 734013, District Darjeeling, West Bengal, India
文摘
Helopeltis theivora Waterhouse (Heteroptera: Miridae) is a major sucking insect pest of tea (Camellia sinensis) which feeds on a wide variety of alternative host plants. Feeding biology and fitness traits of H. theivora, on two alternative host plants, viz., Mikania micrantha (Asteraceae) and Psidium guajava (Myrtaceae), besides C. sinensis (Theaceae), were studied along with corresponding levels of xenobiotic defense enzymes. C. sinensis is the preferred host of H. theivora. The development time of H. theivora is significantly shorter on C. sinensis (13.3?±-.16?days) than on the two other hosts, M. micrantha (14.2?±-.22?days) and P. guajava (14.7?±-.23?days). Similarly, the fecundity (C. sinensis: 172.6?±-.5 eggs/female, M. micrantha: 128.6?±-.4 eggs/female, P. guajava: 118.7?±-.3 eggs/female), oviposition period (C. sinensis: 24.1?±-.7?days, M. micrantha: 22.5?±-.6?days, P. guajava: 21.7?±-.8?days) and hatchability (C. sinensis: 80.9?±-.9%, M. micrantha: 69.4?±-.6%, P. guajava: 64.1?±-.7%) are recorded to be significantly higher on C. sinensis. The age at reproductive maturity and egg incubation periods were lower on C. sinensis than on the two other host plants. Host-based variation in H. theivora fitness traits is interpreted in light of differential activity of three principal xenobiotic detoxifying enzymes, the general esterases (GEs), glutathione S-transferases (GSTs) and cytochrome P450 monooxygenases (CYPs). The activities of these enzymes in H. theivora were significantly enhanced when the insect fed on M. micrantha and P. guajava as compared with on C. sinensis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700