用户名: 密码: 验证码:
Hypertonie und renale thrombotische Mikroangiopathie unter anti-angiogener Tumortherapie
详细信息    查看全文
  • 作者:Prof. Dr. I. Grgic ; Prof. Dr. A. Burchert ; Prof. B. D. Humphreys MD ; PhD
  • 关键词:Anti ; angiogene Therapie ; VEGF ; Signalgebung ; Arterielle Hypertonie ; Proteinurie ; Renale thrombotische Mikroangiopathie ; Anti ; angiogenic therapy ; VEGF signaling pathway ; Arterial hypertension ; Proteinuria ; Renal thrombotic microangiopathy
  • 刊名:Der Nephrologe
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 页码:20-27
  • 全文大小:570 KB
  • 参考文献:1.Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMed CrossRef
    2.Ferrara N, Hillan KJ, Gerber HP et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400PubMed CrossRef
    3.Gotink KJ, Verheul HM (2010) Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 13:1–14PubMed PubMedCentral CrossRef
    4.Zhu X, Wu S, Dahut WL et al (2007) Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis 49:186–193PubMed CrossRef
    5.Wu S, Chen JJ, Kudelka A et al (2008) Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol 9:117–123PubMed CrossRef
    6.Robinson ES, Matulonis UA, Ivy P et al (2010) Rapid development of hypertension and proteinuria with cediranib, an oral vascular endothelial growth factor receptor inhibitor. Clin J Am Soc Nephrol 5:477–483PubMed PubMedCentral CrossRef
    7.Maitland ML, Kasza KE, Karrison T et al (2009) Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment. Clin Cancer Res 15:6250–6257PubMed PubMedCentral CrossRef
    8.Patel TV, Morgan JA, Demetri GD et al (2008) A preeclampsia-like syndrome characterized by reversible hypertension and proteinuria induced by the multitargeted kinase inhibitors sunitinib and sorafenib. J Natl Cancer Inst 100:282–284PubMed CrossRef
    9.Izzedine H, Rixe O, Billemont B et al (2007) Angiogenesis inhibitor therapies: focus on kidney toxicity and hypertension. Am J Kidney Dis 50:203–218PubMed CrossRef
    10.Hood JD, Meininger CJ, Ziche M et al (1998) VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol 274:H1054–1058PubMed
    11.Robinson ES, Khankin EV, Choueiri TK et al (2010) Suppression of the nitric oxide pathway in metastatic renal cell carcinoma patients receiving vascular endothelial growth factor-signaling inhibitors. Hypertension 56:1131–1136PubMed PubMedCentral CrossRef
    12.Mayer EL, Dallabrida SM, Rupnick MA et al (2011) Contrary effects of the receptor tyrosine kinase inhibitor vandetanib on constitutive and flow-stimulated nitric oxide elaboration in humans. Hypertension 58:85–92PubMed PubMedCentral CrossRef
    13.Facemire CS, Nixon AB, Griffiths R et al (2009) Vascular endothelial growth factor receptor 2 controls blood pressure by regulating nitric oxide synthase expression. Hypertension 54:652–658PubMed PubMedCentral CrossRef
    14.Kappers MH, de Beer VJ, Zhou Z et al (2012) Sunitinib-induced systemic vasoconstriction in swine is endothelin mediated and does not involve nitric oxide or oxidative stress. Hypertension 59:151–157PubMed CrossRef
    15.Kappers MH, van Esch JH, Sluiter W et al (2010) Hypertension induced by the tyrosine kinase inhibitor sunitinib is associated with increased circulating endothelin-1 levels. Hypertension 56:675–681PubMed CrossRef
    16.de Jesus-Gonzalez N, Robinson E, Penchev R et al (2012) Regorafenib induces rapid and reversible changes in plasma nitric oxide and endothelin-1. Am J Hypertens 25:1118–1123PubMed CrossRef
    17.Kappers MH, Smedts FM, Horn T et al (2011) The vascular endothelial growth factor receptor inhibitor sunitinib causes a preeclampsia-like syndrome with activation of the endothelin system. Hypertension 58:295–302PubMed CrossRef
    18.Lee S, Chen TT, Barber CL et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703PubMed PubMedCentral CrossRef
    19.Bohm F, Pernow J (2007) The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc Res 76:8–18PubMed CrossRef
    20.Baffert F, Le T, Sennino B et al (2006) Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am J Physiol Heart Circ Physiol 290:H547–H559PubMed CrossRef
    21.Mourad JJ, des Guetz G, Debbabi H et al (2008) Blood pressure rise following angiogenesis inhibition by bevacizumab. A crucial role for microcirculation. Ann Oncol 19:927–934PubMed CrossRef
    22.Steeghs N, Gelderblom H, Roodt JO et al (2008) Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res 14:3470–3476PubMed CrossRef
    23.Greene AS, Tonellato PJ, Lui J et al (1989) Microvascular rarefaction and tissue vascular resistance in hypertension. Am J Physiol 256:H126–H131PubMed
    24.Machnik A, Neuhofer W, Jantsch J et al (2009) Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med 15:545–552PubMed CrossRef
    25.Robinson ES, Khankin EV, Karumanchi SA et al (2010) Hypertension induced by vascular endothelial growth factor signaling pathway inhibition: mechanisms and potential use as a biomarker. Semin Nephrol 30:591–601PubMed PubMedCentral CrossRef
    26.Glusker P, Recht L, Lane B (2006) Reversible posterior leukoencephalopathy syndrome and bevacizumab. N Engl J Med 354:980–982 (discussion 980–982)PubMed CrossRef
    27.Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134PubMed CrossRef
    28.Maitland ML, Bakris GL, Black HR et al (2010) Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst 102:596–604PubMed PubMedCentral CrossRef
    29.Pickering TG, Hall JE, Appel LJ et al (2005) Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 111:697–716PubMed CrossRef
    30.Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342PubMed CrossRef
    31.Azizi M, Chedid A, Oudard S (2008) Home blood-pressure monitoring in patients receiving sunitinib. N Engl J Med 358:95–97PubMed CrossRef
    32.de Jesus-Gonzalez N, Robinson E, Moslehi J et al (2012) Management of antiangiogenic therapy-induced hypertension. Hypertension 60:607–615PubMed PubMedCentral CrossRef
    33.Abernethy DR, Schwartz JB (1999) Calcium-antagonist drugs. N Engl J Med 341:1447–1457PubMed CrossRef
    34.Pande A, Lombardo J, Spangenthal E et al (2007) Hypertension secondary to anti-angiogenic therapy: experience with bevacizumab. Anticancer Res 27:3465–3470PubMed
    35.Mir O, Coriat R, Ropert S et al (2012) Treatment of bevacizumab-induced hypertension by amlodipine. Invest New Drugs 30:702–707PubMed CrossRef
    36.Izzedine H, Ederhy S, Goldwasser F et al (2009) Management of hypertension in angiogenesis inhibitor-treated patients. Ann Oncol 20:807–815PubMed CrossRef
    37.Curwen JO, Musgrove HL, Kendrew J et al (2008) Inhibition of vascular endothelial growth factor – a signaling induces hypertension: examining the effect of cediranib (recentin; AZD2171) treatment on blood pressure in rat and the use of concomitant antihypertensive therapy. Clin Cancer Res 14:3124–3131PubMed CrossRef
    38.Tlemsani C, Mir O, Boudou-Rouquette P et al (2011) Posterior reversible encephalopathy syndrome induced by anti-VEGF agents. Target Oncol 6:253–258PubMed CrossRef
    39.Seet RC, Rabinstein AA (2012) Clinical features and outcomes of posterior reversible encephalopathy syndrome following bevacizumab treatment. QJM 105:69–75PubMed CrossRef
    40.Mir O, Mouthon L, Alexandre J et al (2007) Bevacizumab-induced cardiovascular events: a consequence of cholesterol emboli syndrome? J Natl Cancer Inst 99:85–86PubMed CrossRef
    41.Humphreys BD, Atkins MB (2009) Rapid development of hypertension by sorafenib: toxicity or target? Clin Cancer Res 15:5947–5949PubMed PubMedCentral CrossRef
    42.Scartozzi M, Galizia E, Chiorrini S et al (2009) Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Ann Oncol 20:227–230PubMed CrossRef
    43.Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216PubMed CrossRef
    44.Rixe O, Billemont B, Izzedine H (2007) Hypertension as a predictive factor of Sunitinib activity. Ann Oncol 18:1117PubMed CrossRef
    45.Bono P, Elfving H, Utriainen T et al (2009) Hypertension and clinical benefit of bevacizumab in the treatment of advanced renal cell carcinoma. Ann Oncol 20:393–394PubMed CrossRef
    46.Rini BI, Schiller JH, Fruehauf JP et al (2011) Diastolic blood pressure as a biomarker of axitinib efficacy in solid tumors. Clin Cancer Res 17:3841–3849PubMed CrossRef
    47.Schneider BP, Wang M, Radovich M et al (2008) Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol 26:4672–4678PubMed PubMedCentral CrossRef
    48.Kim JJ, Vaziri SA, Rini BI et al (2012) Association of VEGF and VEGFR2 single nucleotide polymorphisms with hypertension and clinical outcome in metastatic clear cell renal cell carcinoma patients treated with sunitinib. Cancer 118:1946–1954PubMed PubMedCentral CrossRef
    49.Rini BI, Melichar B, Ueda T et al (2013) Axitinib with or without dose titration for first-line metastatic renal-cell carcinoma: a randomised double-blind phase 2 trial. Lancet Oncol 14:1233–1242PubMed PubMedCentral CrossRef
    50.Bollee G, Patey N, Cazajous G et al (2009) Thrombotic microangiopathy secondary to VEGF pathway inhibition by sunitinib. Nephrol Dial Transplant 24:682–685PubMed CrossRef
    51.Eremina V, Jefferson JA, Kowalewska J et al (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358:1129–1136PubMed PubMedCentral CrossRef
    52.Humphreys BD, Sharman JP, Henderson JM et al (2004) Gemcitabine-associated thrombotic microangiopathy. Cancer 100:2664–2670PubMed CrossRef
    53.Wu S, Kim C, Baer L et al (2010) Bevacizumab increases risk for severe proteinuria in cancer patients. J Am Soc Nephrol 21:1381–1389PubMed PubMedCentral CrossRef
    54.Levine RJ, Maynard SE, Qian C et al (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672–683PubMed CrossRef
    55.Eremina V, Quaggin SE (2010) Biology of anti-angiogenic therapy-induced thrombotic microangiopathy. Semin Nephrol 30:582–590PubMed CrossRef
    56.Izzedine H, Brocheriou I, Deray G et al (2007) Thrombotic microangiopathy and anti-VEGF agents. Nephrol Dial Transplant 22:1481–1482PubMed CrossRef
    57.Roncone D, Satoskar A, Nadasdy T et al (2007) Proteinuria in a patient receiving anti-VEGF therapy for metastatic renal cell carcinoma. Nat Clin Pract Nephrol 3:287–293PubMed CrossRef
    58.Frangie C, Lefaucheur C, Medioni J et al (2007) Renal thrombotic microangiopathy caused by anti-VEGF-antibody treatment for metastatic renal-cell carcinoma. Lancet Oncol 8:177–178PubMed CrossRef
    59.George BA, Zhou XJ, Toto R (2007) Nephrotic syndrome after bevacizumab: case report and literature review. Am J Kidney Dis 49:e23–e29PubMed CrossRef
    60.Johnson DH, Fehrenbacher L, Novotny WF et al (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22:2184–2191PubMed CrossRef
    61.Khurana A (2007) Allergic interstitial nephritis possibly related to sunitinib use. Am J Geriatr Pharmacother 5:341–344PubMed CrossRef
    62.Winn SK, Ellis S, Savage P et al (2009) Biopsy-proven acute interstitial nephritis associated with the tyrosine kinase inhibitor sunitinib: a class effect? Nephrol Dial Transplant 24:673–675PubMed CrossRef
    63.Jhaveri KD, Flombaum CD, Kroog G et al (2011) Nephrotoxicities associated with the use of tyrosine kinase inhibitors: a single-center experience and review of the literature. Nephron Clin Pract 117:c312–c319PubMed CrossRef
    64.Gurevich F, Perazella MA (2009) Renal effects of anti-angiogenesis therapy: update for the internist. Am J Med 122:322–328PubMed CrossRef
    65.Obhrai JS, Patel TV, Humphreys BD (2008) The case/progressive hypertension and proteinuria on anti-angiogenic therapy. Kidney Int 74:685–686PubMed PubMedCentral CrossRef
  • 作者单位:Prof. Dr. I. Grgic (1)
    Prof. Dr. A. Burchert (2)
    Prof. B. D. Humphreys MD, PhD (3) (4) (5)

    1. Klinik für Innere Medizin und Nephrologie, Universitätsklinikum Gießen und Marburg, Philipps-Universität Marburg, Baldingerstraße 1, 35033, Marburg, Deutschland
    2. Klinik für Hämatologie, Onkologie und Immunologie, Universitätsklinikum Gießen und Marburg, Philipps-Universität Marburg, 35033, Marburg, Deutschland
    3. Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
    4. Dana Farber Cancer Institute, Lance Armstrong Foundation, Boston, Massachusetts, USA
    5. Department of Medicine, Washington University Medical Center, St Louis, Missouri, USA
  • 刊物主题:Nephrology; Angiology; Metabolic Diseases; Oncology; Transplant Surgery; Urology/Andrology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1862-0418
文摘
Anti-angiogenic therapies (AAT) targeting the VEGF signaling pathway (VSP) are increasingly used by oncologists for palliative treatment of patients with various solid tumors. While these non-curative drugs may improve certain treatment endpoints in selected cancer entities, clinical data suggest that they also cause a number of serious cardiovascular and renal side effects at rather high rates. For instance, the incidence of clinical hypertension has been estimated to be 19-24% and may be even higher with more potent second-generation VSP inhibitors. Onset of proteinuria has been observed in up to 20% of treated cases. Another frequently occurring renal complication under AAT is the development of renal thrombotic microangiopathy (TMA). This pattern of injury is the same as found in patients with pre-eclampsia, also a disease of disordered VEGF signaling and endothelial dysfunction. Because use of these medications continues to grow and many new formulations in development, there is an increasing need for the nephrologist to learn how to diagnose and manage VSP inhibitor toxicities. But at the same time there is a great opportunity to try connect these adverse events and clinical phenotypes back to the molecular mechanisms precipitating them. Consistent with the concept of personalized medicine, we may at some point use this new knowledge to individualize and hence optimize therapies for patients undergoing anti-angiogenic treatment. Keywords Anti-angiogenic therapy VEGF signaling pathway Arterial hypertension Proteinuria Renal thrombotic microangiopathy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700