用户名: 密码: 验证码:
Preparation and characterization of biodegradable nano hydroxyapatite–bacterial cellulose composites with well-defined honeycomb pore arrays for bone tissue engineering applications
详细信息    查看全文
  • 作者:Pelagie Marlene Favi ; Sandra Patricia Ospina ; Mukta Kachole ; Ming Gao…
  • 关键词:Biodegradable ; Microporous scaffold ; 2 ; 3 ; Dialdehyde bacterial cellulose ; Biomimetic hydroxyapatite ; Laser perforation ; Bone tissue regeneration ; Nanotechnology
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:23
  • 期:2
  • 页码:1263-1282
  • 全文大小:2,445 KB
  • 参考文献:Ahrem H et al (2014) Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater 10:1341–1353. doi:10.​1016/​j.​actbio.​2013.​12.​004 CrossRef
    Akkouch A, Zhang Z, Rouabhia M (2014) Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen–hydroxyapatite-poly(L -lactide-co-ε-caprolactone) scaffold. J Biomater Appl 28(6):922–936. doi:10.​1177/​0885328213486705​ CrossRef
    American Society for Testing and Materials (2010) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA
    Backdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320–330. doi:10.​1002/​term.​97 CrossRef
    Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149. doi:10.​1016/​j.​biomaterials.​2005.​10.​026 CrossRef
    Bansal M, Kaushik M, Khattak BBP, Sharma A (2014) Comparison of nanocrystalline hydroxyapatite and synthetic resorbable hydroxyapatite graft in the treatment of intrabony defects: a clinical and radiographic study. J Indian Soc Periodontol 18:213–219. doi:10.​4103/​0972-124X.​131329 CrossRef
    Berner A et al (2012) Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration. Cell Tissue Res 347:603–612. doi:10.​1007/​s00441-011-1298-z CrossRef
    Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. doi:10.​1016/​j.​biotechadv.​2010.​01.​004 CrossRef
    Bielecki S, Krystoynowicz A, Turkiewicz M, Kalinowska H (2001) Bacterial cellulose. In: Vandamme EJ, De Baets S, Steinb A (eds) Biopolymers. Polysaccharides I, polysaccharides from prokaryotes, vol 5. Wiley, Weinham, pp 37–46
    Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16:496–504. doi:10.​1016/​j.​mattod.​2013.​11.​017 CrossRef
    Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792. doi:10.​1016/​j.​eurpolymj.​2012.​12.​009 CrossRef
    Cui D, Daley W, Naftel JP, Lynch JC, Haines DE, Yang G, Fratkin JD (2011) Atlas of histology: with functional and clinical correlations, 1st edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia
    El-Ayoubi R, Degrandpre C, DiRaddo R, Yousefi A-M, Lavigne P (2011) Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. J Biomater Appl 25:429–444. doi:10.​1177/​0885328209355332​ CrossRef
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. doi:10.​1016/​j.​cell.​2006.​06.​044 CrossRef
    Evans FG (1976) Mechanical properties and histology of cortical bone from younger and older men. Anat Rec 185:1–11. doi:10.​1002/​ar.​1091850102 CrossRef
    Favi PM, Benson RS, Neilsen NR, Hammonds RL, Bates CC, Stephens CP, Dhar MS (2013) Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Mater Sci Eng C 33:1935–1944. doi:10.​1016/​j.​msec.​2012.​12.​100 CrossRef
    Favi PM, Dhar MS, Neilsen NR, Benson RS (2014) Proliferation and osteogenic differentiation of mesenchymal stem cells on biodegradable calcium-deficient hydroxyapatite tubular bacterial cellulose composites. MRS Proc. doi:10.​1557/​opl.​2014.​287
    Fontana J et al (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264. doi:10.​1007/​bf02920250 CrossRef
    Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ (2010) Design of a multiphase osteochondral scaffold. II. Fabrication of a mineralized collagen–glycosaminoglycan scaffold. J Biomed Mater Res A 92A:1066–1077. doi:10.​1002/​jbm.​a.​32361
    Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76A:431–438. doi:10.​1002/​jbm.​a.​30570 CrossRef
    Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415. doi:10.​1016/​S0142-9612(03)00343-0 CrossRef
    Hu J, Zhou Y, Huang L, Liu J, Lu H (2014) Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics. BMC Musculoskelet Disord 15:114. doi:10.​1186/​1471-2474-15-114 CrossRef
    Hu J et al (2011) J Biomed Mater Res B, 2011, 97B and US Patent No. 20100172889
    Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27:4661–4670. doi:10.​1016/​j.​biomaterials.​2006.​04.​032 CrossRef
    Hutchens S, Benson R, Evans B, Rawn C, O’Neill H (2009) A resorbable calcium-deficient hydroxyapatite hydrogel composite for osseous regeneration. Cellulose 16:887–898. doi:10.​1007/​s10570-009-9300-6 CrossRef
    Jalota S, Bhaduri SB, Tas AC (2008) Using a synthetic body fluid (SBF) solution of 27 mM HCO3− to make bone substitutes more osteointegrative. Mater Sci Eng C 28:129–140. doi:10.​1016/​j.​msec.​2007.​10.​058 CrossRef
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491. doi:10.​1016/​j.​biomaterials.​2005.​02.​002 CrossRef
    Kim B-S, Kang HJ, Lee J (2013) Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating. J Biomed Mater Res B 101:1302–1309. doi:10.​1002/​jbm.​b.​32943 CrossRef
    Kirkham KD, Roundy CB (2014) Current technology of beam profile measurement. In: Dickey FM (ed) Laser beam shaping: theory and techniques, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 463–524
    Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603. doi:10.​1016/​s0079-6700(01)00021-1 CrossRef
    Kondo T (1998) Hydrogen bonds in cellulose and cellulose derivatives. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. vol Dumitriu S. Marcel Dekker Inc, New York, NY, pp 131–172
    Kuboki Y, Jin Q, Takita H (2001) Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am 83-A(Suppl 1 (Pt 2)):S105–S115
    Kubota T, Sato K, Yamamoto S, Hirano A (1984) Ultrastructural study of the formation of psammoma bodies in fibroblastic meningioma. J Neurosurg 60:512–517. doi:10.​3171/​jns.​1984.​60.​3.​0512 CrossRef
    Kucharzewski M, Slezak A, Franek A (2003) Topical treatment of non-healing venous leg ulcers by cellulose membrane. Phlebologie 32:138–169
    Lee YM et al (2000) Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. J Periodontol 71:410–417. doi:10.​1902/​jop.​2000.​71.​3.​410 CrossRef
    Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29:1635–1642. doi:10.​1016/​j.​msec.​2009.​01.​006 CrossRef
    Li K, Wang J, Liu X, Xiong X, Liu H (2012) Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers. Carbohydr Polym 90:1573–1581. doi:10.​1016/​j.​carbpol.​2012.​07.​033 CrossRef
    Liu H, Webster TJ (2011) Enhanced biological and mechanical properties of well-dispersed nanophase ceramics in polymer composites: from 2D to 3D printed structures. Mater Sci Eng C 31:77–89. doi:10.​1016/​j.​msec.​2010.​07.​013 CrossRef
    Lynn AK, Best SM, Cameron RE, Harley BA, Yannas IV, Gibson LJ, Bonfield W (2010) Design of a multiphase osteochondral scaffold. I. Control of chemical composition. J Biomed Mater Res A 92A:1057–1065. doi:10.​1002/​jbm.​a.​32415
    Ma J et al (2014) Concise review: cell-based strategies in bone tissue engineering and regenerative medicine. Stem Cells Transl Med 3:98–107. doi:10.​5966/​sctm.​2013-0126 CrossRef
    Marolt D, Knezevic M, Novakovic GV (2010) Bone tissue engineering with human stem cells. Stem Cell Res Ther 1:10–20CrossRef
    Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466. doi:10.​1016/​j.​biomaterials.​2009.​09.​063 CrossRef
    Nguyen DT, Burg KJL (2015) Bone tissue engineering and regenerative medicine: targeting pathological fractures. J Biomed Mater Res A 103:420–429. doi:10.​1002/​jbm.​a.​35139 CrossRef
    Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700. doi:10.​1021/​bm100214b CrossRef
    Painter TJ (1988) Control of depolymerisation during the preparation of reduced dialdehyde cellulose. Carbohydr Res 179:259–268. doi:10.​1016/​0008-6215(88)84123-5 CrossRef
    Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887CrossRef
    Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater. doi:10.​1002/​adma.​201403354
    Pommerening K, Rein H, Betram D, Muller R (1992) Estimation of dialdehyde groups in 2,3-dialdehyde bead cellulose. Carboohydr Res 233:219–223CrossRef
    Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antônio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28:549–554. doi:10.​1016/​j.​msec.​2007.​11.​011 CrossRef
    Roy-Chowdhury P, Kumar V (2006) Fabrication and evaluation of porous 2,3-dialdehydecellulose membrane as a potential biodegradable tissue-engineering scaffold. J Biomed Mater Res A 76A:300–309. doi:10.​1002/​jbm.​a.​30503 CrossRef
    Salmen L, Akerholm M, Hinterstoisser B (2005) Two-dimensional Fourier transform infrared spectroscopy applied to cellulose and paper. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 159–187
    Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R, Banaprasert T, Pavasant P, Phisalaphong M (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 22:1194–1199. doi:10.​1021/​bp060035o CrossRef
    Schrarnrn M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129CrossRef
    Smith EL et al (2014) Evaluation of skeletal tissue repair, part 1: assessment of novel growth-factor-releasing hydrogels in an ex vivo chick femur defect model. Acta Biomater 10:4186–4196. doi:10.​1016/​j.​actbio.​2014.​06.​011 CrossRef
    Suárez-González D et al (2013) Controlled multiple growth factor delivery from bone tissue engineering scaffolds via designed affinity. Tissue Eng A 20:2077–2087. doi:10.​1089/​ten.​tea.​2013.​0358 CrossRef
    Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431. doi:10.​1016/​j.​biomaterials.​2004.​02.​049 CrossRef
    Torabinejad B, Mohammadi-Rovshandeh J, Davachi SM, Zamanian A (2014) Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of l-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering. Mater Sci Eng C 42:199–210. doi:10.​1016/​j.​msec.​2014.​05.​003 CrossRef
    Tracy BM, Doremus RH (1984) Direct electron microscopy studies of the bone–hydroxylapatite interface. J Biomed Mater Res 18:719–726. doi:10.​1002/​jbm.​820180702 CrossRef
    Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 121:317–324CrossRef
    Ustundag CB, Kaya F, Kamitakahara M, Kaya C, Ioku K (2012) Production of tubular porous hydroxyapatite using electrophoretic deposition. J Ceram Soc Jpn 120:569–573CrossRef
    Varma AJ, Kulkarni MP (2002) Oxidation of cellulose under controlled conditions. Polym Degrad Stabil 77:25–27CrossRef
    Wan YZ et al (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng C 27:855–864. doi:10.​1016/​j.​msec.​2006.​10.​002 CrossRef
    Wang J, Chunxi Y, Yizao W, Honglin L, Fang H, Kerong D, Yuan H (2011) Laser patterning of bacterial cellulose hydrogel and its modification with gelatin and hydroxyapatite for bone tissue engineering. Soft Mater 11:173–180. doi:10.​1080/​1539445X.​2011.​611204
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000a) Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803–1810. doi:10.​1016/​S0142-9612(00)00075-2 CrossRef
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000b) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51:475–483. doi:10.​1002/​1097-4636(20000905)51:​3<475:​aid-jbm23>3.​0.​co;2-9 CrossRef
    Wegman F, Geuze RE, van der Helm YJ, Cumhur Öner F, Dhert WJA, Alblas J (2014) Gene delivery of bone morphogenetic protein-2 plasmid DNA promotes bone formation in a large animal model. J Tissue Eng Regen Med 8:763–770. doi:10.​1002/​term.​1571 CrossRef
    Wu J, Zheng Y, Yang Z, Lin Q, Qiao K, Chen X, Peng Y (2014) Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation. RSC Adv 4:3998–4009. doi:10.​1039/​C3RA45407J CrossRef
  • 作者单位:Pelagie Marlene Favi (1)
    Sandra Patricia Ospina (2)
    Mukta Kachole (3)
    Ming Gao (4)
    Lucia Atehortua (5)
    Thomas Jay Webster (1) (6)

    1. Department of Chemical Engineering, Northeastern University, Boston, MA, USA
    2. Institute of Biology, University Research Headquarters, University of Antioquia, Medellín, Antioquia, Colombia
    3. Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
    4. Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
    5. Instituto de Biología, Sede de Investigación Universidad de Antioquia-SIU., Torre 1. Lab. 210., Medellín, Colombia
    6. Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
Bacterial cellulose (BC), a nano fibrous hydrogel synthesized from non-pathogenic bacteria, is an excellent candidate scaffold for bone tissue engineering applications due to its biocompatibility, high purity and mechanical strength. However, BC is not biodegradable and possesses small pore sizes, which hinders the ingrowth of cells and thereby limits its potential as a bone tissue engineering scaffold. In this study, microporous BC (termed Porous BC) scaffolds with well-defined honeycomb pore arrays were prepared using a laser patterning technique. The BC scaffolds were modified using periodate oxidation to yield biodegradable oxidized BC scaffolds. In a unique manner, the BC scaffolds were then mineralized with nano hydroxyapatite (nano HA) to mimic the inorganic component of native bone tissue, improve bone cell compatibility, enhance mechanical properties, and control degradation. Results confirmed that sodium periodate oxidation successfully oxidized BC and Porous BC honeycomb pore arrays with 300 μm pore sizes with irregularly shaped 77 ± 15 nm nano HA and aggregated 200–500 nm nano HA were formed. BC and its composites displayed suitable mechanical properties for bone tissue engineering applications. The in vitro degradation study showed a significant 13–25 % loss of their dry mass in the oxidized BC composites thus confirming that the oxidized cellulose can biodegrade. Most importantly, the results also demonstrated that human-derived bone marrow mesenchymal stem cells (hMSCs) adhered to and were viable on the BC and its composites, thus, confirming their potential to serve as improved bone tissue engineering scaffolds. The novelty of the present study includes the precipitation of nano HA onto cellulose to promote hMSCs functions for improving orthopedic applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700