用户名: 密码: 验证码:
Microtubule encounter-based catastrophe in Arabidopsis cortical microtubule arrays
详细信息    查看全文
  • 作者:Zhihai Chi ; Chris Ambrose
  • 关键词:Arabidopsis ; Microtubule ; Cytoskeleton ; CLASP ; Pavement epidermal cell ; Microtubule ; associated protein ; clasp ; 1 mutant
  • 刊名:BMC Plant Biology
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 全文大小:2,688 KB
  • 参考文献:1.Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13:83–117.PubMed CrossRef
    2.Shaw SL, Kamyar R, Ehrhardt DW. Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science. 2003;300:1715–8.PubMed CrossRef
    3.Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature. 1984;312:237–42.PubMed CrossRef
    4.Yao M, Wakamatsu Y, Itoh TJ, Shoji T, Hashimoto T. Arabidopsis SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics. J Cell Sci. 2008;121:2372–81.PubMed CrossRef
    5.Kawamura E, Wasteneys GO. MOR1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo. J Cell Sci. 2008;121(Pt 24):4114–23.PubMed CrossRef
    6.Muller S, Smertenko A, Wagner V, Heinrich M, Hussey PJ, Hauser MT. The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr Biol. 2004;14:412–7.PubMed PubMedCentral CrossRef
    7.Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A. The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol. 2002;50:915–24.PubMed CrossRef
    8.Burk DH, Ye ZH. Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell. 2002;14:2145–60.PubMed PubMedCentral CrossRef
    9.Gundersen GG, Gomes ER, Wen Y. Cortical control of microtubule stability and polarization. Curr Opin Cell Biol. 2004;16:106–12.PubMed CrossRef
    10.Clayton L, Black CM, Lloyd CW. Microtubule nucleating sites in higher plant cells identified by an auto-antibody against pericentriolar material. J Cell Biol. 1985;101:319–24.PubMed CrossRef
    11.Wick S. The higher-plant mitotic apparatus - redistribution of microtubules, calmodulin and microtubule initiation material during its establishment. Cytobios. 1985;43:285–94.
    12.Liu B, Marc J, Joshi HC, Palevitz BA. A gamma-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci. 1993;104(Pt 4):1217–28.PubMed
    13.Erhardt M, Stoppin-Mellet V, Campagne S, Canaday J, Mutterer J, Fabian T, et al. The plant Spc98p homologue colocalizes with gamma-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci. 2002;115(Pt 11):2423–31.PubMed
    14.Kumagai F, Nagata T, Yahara N, Moriyama Y, Horio T, Naoi K, et al. Gamma-tubulin distribution during cortical microtubule reorganization at the M/G1 interface in tobacco BY-2 cells. Eur J Cell Biol. 2003;82:43–51.PubMed CrossRef
    15.Brown RC, Lemmon BE. The pleiomorphic plant MTOC: An evolutionary perspective. J Integr Plant Biol. 2007;49:1142–53.CrossRef
    16.Seltzer V, Janski N, Canaday J, Herzog E, Erhardt M, Evrard J-L, et al. Arabidopsis GCP2 and GCP3 are part of a soluble γ-tubulin complex and have nuclear envelope targeting domains: Targeting of γ-tubulin complex proteins. Plant J. 2007;52:322–31.PubMed CrossRef
    17.Ambrose C, Wasteneys GO. Microtubule Initiation from the Nuclear Surface Controls Cortical Microtubule Growth Polarity and Orientation in Arabidopsis thaliana. Plant Cell Physiol. 2014;55:1636–45.PubMed PubMedCentral CrossRef
    18.Hashimoto T, Kato T. Cortical control of plant microtubules. Curr Opin Plant Biol. 2006;9:5–11.PubMed CrossRef
    19.Ehrhardt DW, Shaw SL. Microtubule dynamics and organization in the plant cortical array. Annu Rev Plant Biol. 2006;57:859–75.PubMed CrossRef
    20.Dixit R, Cyr R. The cortical microtubule array: From dynamics to organization. Plant Cell. 2004;16:2546–52.PubMed PubMedCentral CrossRef
    21.Dixit R, Cyr R. Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell. 2004;16:3274–84.PubMed PubMedCentral CrossRef
    22.Wasteneys GO, Ambrose JC. Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol. 2009;19:62–71.PubMed CrossRef
    23.Wightman R, Turner SR. Severing at sites of microtubule crossover contributes to microtubule alignment in cortical arrays. Plant J. 2007;52:742–51.PubMed CrossRef
    24.Lindeboom JJ, Nakamura M, Hibbel A, Shundyak K, Gutierrez R, Ketelaar T, et al. A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. Science. 2013;342:1245533.PubMed CrossRef
    25.Wasteneys GO, Jablonsky PP, Williamson RE. Assembly of purified brain tubulin at cortical and endoplasmic sites in perfused internodal cells of the alga Nitella tasmanica. Cell Biol Int Rep. 1989;13:513–28.CrossRef
    26.Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, et al. Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants. Nat Cell Biol. 2005;7:961–8.PubMed CrossRef
    27.Chan J, Sambade A, Calder G, Lloyd C. Arabidopsis cortical microtubules are initiated along, as well as branching from, existing microtubules. Plant Cell. 2009;21:2298–306.PubMed PubMedCentral CrossRef
    28.Allard JF, Wasteneys GO, Cytrynbaum EN. Mechanisms of Self-Organization of Cortical Microtubules in Plants Revealed by Computational Simulations. Mol Biol Cell. 2010;21:278–86.PubMed PubMedCentral CrossRef
    29.Ambrose C, Wasteneys GO. Cell edges accumulate gamma tubulin complex components and nucleate microtubules following cytokinesis in Arabidopsis thaliana cells. PLoS One. 2011;6:e27423.PubMed PubMedCentral CrossRef
    30.Baulin VA, Marques CM, Thalmann F. Collision induced spatial organization of microtubules. Biophys Chem. 2007;128:231–44.PubMed CrossRef
    31.Deinum EE, Tindemans SH, Mulder BM. Taking directions: the role of microtubule-bound nucleation in the self-organization of the plant cortical array. Phys Biol. 2011;8:056002.PubMed CrossRef
    32.Eren EC, Dixit R, Gautam N. A three-dimensional computer simulation model reveals the mechanisms for self-organization of plant cortical microtubules into oblique arrays. Mol Biol Cell. 2010;21:2674–84.PubMed PubMedCentral CrossRef
    33.Eren EC, Gautam N, Dixit R. Computer simulation and mathematical models of the noncentrosomal plant cortical microtubule cytoskeleton. Cytoskelet Hoboken NJ. 2012;69:144–54.CrossRef
    34.Hawkins RJ, Tindemans SH, Mulder BM. Model for the orientational ordering of the plant microtubule cortical array. Phys Rev E Stat Nonlin Soft Matter Phys. 2010;82(1 Pt 1):11911.CrossRef
    35.Shi X-Q, Ma Y-Q. Understanding phase behavior of plant cell cortex microtubule organization. Proc Natl Acad Sci. 2010;107:11709–14.PubMed PubMedCentral CrossRef
    36.Tindemans SH, Hawkins RJ, Mulder BM. Survival of the aligned: ordering of the plant cortical microtubule array. Phys Rev Lett. 2010;104:58103.CrossRef
    37.Wang X, Zhu L, Liu B, Wang C, Jin L, Zhao Q, et al. Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 Functions in Directional Cell Growth by Destabilizing Cortical Microtubules. Plant Cell Online. 2007;19:877–89.CrossRef
    38.Oda Y, Fukuda H. Rho of Plant GTPase Signaling Regulates the Behavior of Arabidopsis Kinesin-13A to Establish Secondary Cell Wall Patterns. Plant Cell. 2013;25:4439–50.PubMed PubMedCentral CrossRef
    39.Eng RC, Wasteneys GO. The microtubule plus-end tracking protein ARMADILLO-REPEAT KINESIN1 promotes microtubule catastrophe in Arabidopsis. Plant Cell. 2014;26:3372–86.PubMed PubMedCentral CrossRef
    40.Tischer C, Brunner D, Dogterom M. Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics. Mol Syst Biol. 2009;5:250.PubMed PubMedCentral CrossRef
    41.Janson ME, Dogterom M. Scaling of microtubule force-velocity curves obtained at different tubulin concentrations. Phys Rev Lett. 2004;92:2723–36.CrossRef
    42.Dogterom M, Yurke B. Measurement of the Force-Velocity Relation for Growing Microtubules. Science. 1997;278:856–60.PubMed CrossRef
    43.Janson ME, de Dood ME, Dogterom M. Dynamic instability of microtubules is regulated by force. J Cell Biol. 2003;161:1029–34.PubMed PubMedCentral CrossRef
    44.Ambrose C, Allard JF, Cytrynbaum EN, Wasteneys GO. A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat Commun. 2011;2:430.PubMed PubMedCentral CrossRef
    45.Mimori-Kiyosue Y, Grigoriev I, Lansbergen G, Sasaki H, Matsui C, Severin F, et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J Cell Biol. 2005;168:141–53.PubMed PubMedCentral CrossRef
    46.Nakamura M, Naoi K, Shoji T, Hashimoto T. Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells. Plant Cell Physiol. 2004;45:1330–4.PubMed CrossRef
    47.Burnette DT, Sengupta P, Dai Y, Lippincott-Schwartz J, Kachar B. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc Natl Acad Sci. 2011;108:21081–6.PubMed PubMedCentral CrossRef
    48.Laan L, Husson J, Munteanu EL, Kerssemakers JWJ, Dogterom M. Force-generation and dynamic instability of microtubule bundles. Proc Natl Acad Sci U S A. 2008;105:8920–5.PubMed PubMedCentral CrossRef
    49.Ambrose JC, Wasteneys GO. CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules. Mol Biol Cell. 2008;19:4730–7.PubMed PubMedCentral CrossRef
    50.Dhonukshe P, Gadella TWJ. Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell. 2003;15:597–611.PubMed PubMedCentral CrossRef
    51.Vos JW, Dogterom M, Emons AMC. Microtubules become more dynamic but not shorter during preprophase band formation: A possible “search-and-capture” mechanism for microtubule translocation. Cell Motil Cytoskeleton. 2004;57:246–58.PubMed CrossRef
    52.Van Damme D, Bouget FY, Van Poucke K, Inze D, Geelen D. Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J. 2004;40:386–98.PubMed CrossRef
    53.DeBolt S, Gutierrez R, Ehrhardt DW, Melo CV, Ross L, Cutler SR, et al. Morlin, an inhibitor of cortical microtubule dynamics and cellulose synthase movement. Proc Natl Acad Sci U A. 2007;104:5854–9.CrossRef
    54.Galva C, Kirik V, Lindeboom JJ, Kaloriti D, Rancour D, Hussey P, et al. The Microtubule Plus-End Tracking Proteins SPR1 and EB1b Interact to Maintain Polar Cell Elongation and Directional Organ Growth in Arabidopsis. Plant Cell. 2014;26:4409–25.PubMed PubMedCentral CrossRef
    55.Komis G, Mistrik M, Samajova O, Doskocilova A, Ovecka M, Illes P, et al. Dynamics and Organization of Cortical Microtubules as Revealed by Superresolution Structured Illumination Microscopy. Plant Physiol. 2014;165:129–48.PubMed PubMedCentral CrossRef
    56.Mathur J, Mathur N, Kernebeck B, Srinivas BP, Hulskamp M. A novel localization pattern for an EB1-like protein links microtubule dynamics to endomembrane organization. Curr Biol. 2003;13:1991–7.PubMed CrossRef
    57.Nakamura M, Hashimoto T. A mutation in the Arabidopsis -tubulin-containing complex causes helical growth and abnormal microtubule branching. J Cell Sci. 2009;122:2208–17.PubMed CrossRef
    58.Nakaoka Y, Kimura A, Tani T, Goshima G. Cytoplasmic Nucleation and Atypical Branching Nucleation Generate Endoplasmic Microtubules in Physcomitrella patens. Plant Cell Online. 2015;27:1–16.CrossRef
    59.Wang X, Zhang J, Yuan M, Ehrhardt DW, Wang Z, Mao T. Arabidopsis MICROTUBULE DESTABILIZING PROTEIN40 Is Involved in Brassinosteroid Regulation of Hypocotyl Elongation. Plant Cell. 2012;24:4012–25.PubMed PubMedCentral CrossRef
    60.Zhang Q, Fishel E, Bertroche T, Dixit R. Microtubule Severing at Crossover Sites by Katanin Generates Ordered Cortical Microtubule Arrays in Arabidopsis. Curr Biol. 2013;23:2191–5.PubMed CrossRef
    61.Sousa A, Reis R, Sampaio P, Sunkel CE. The Drosophila CLASP homologue, Mast/Orbit regulates the dynamic behaviour of interphase microtubules by promoting the pause state. Cell Motil Cytoskeleton. 2007;64:605–20.PubMed CrossRef
    62.Al-Bassam J, Kim H, Brouhard G, van Oijen A, Harrison SC, Chang F. CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule. Dev Cell. 2010;19:245–58.PubMed PubMedCentral CrossRef
    63.Maiato H, Fairley EA, Rieder CL, Swedlow JR, Sunkel CE, Earnshaw WC. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell. 2003;113:891–904.PubMed CrossRef
    64.Bratman SV, Chang F. Stabilization of overlapping microtubules by fission yeast CLASP. Dev Cell. 2007;13:812–27.PubMed PubMedCentral CrossRef
    65.Komarova YA, Vorobjev IA, Borisy GG. Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J Cell Sci. 2002;115(Pt 17):3527–39.PubMed
    66.Small JV, Kaverina I. Microtubules meet substrate adhesions to arrange cell polarity. Curr Opin Cell Biol. 2003;15:40–7.PubMed CrossRef
    67.Ueda K, Matsuyama T, Hashimoto T. Visualization of microtubules in living cells of transgenicArabidopsis thaliana. Protoplasma. 1999;206:201–6.CrossRef
    68.Komaki S, Abe T, Coutuer S, Inze D, Russinova E, Hashimoto T. Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in Arabidopsis. J Cell Sci. 2010;123:451–9.PubMed CrossRef
    69.Littlejohn GR, Mansfield JC, Christmas JT, Witterick E, Fricker MD, Grant MR, et al. An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology. Front Plant Sci. 2014;5:1–8.
  • 作者单位:Zhihai Chi (1)
    Chris Ambrose (1)

    1. Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
  • 刊物主题:Plant Sciences; Agriculture; Tree Biology;
  • 出版者:BioMed Central
  • ISSN:1471-2229
文摘
Background The cortical microtubules (CMTs) that line the plasma membrane of interphase plant cells are extensively studied owing to their importance in forming cell walls, and their usefulness as a model system for the study of MT dynamic instability and acentrosomal MT organization. CMTs influence the orientation and structure of cellulose microfibrils in the cell wall by cooperatively forming arrays of varied patterns from parallel to netted. These CMT patterns are controlled by the combined activities of MT dynamic instability and MT-MT interactions. However, it is an open question as to how CMT patterns may feedback to influence CMT dynamics and interactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700