用户名: 密码: 验证码:
An inverse model for injection molding of optical lens using artificial neural network coupled with genetic algorithm
详细信息    查看全文
文摘
This study combined the artificial neural network (ANN) with a genetic algorithm (GA) to establish an inverse model of injection molding for optical lens form accuracy. The Taguchi parameter design was used for screening experiments of the injection molding parameters, and the significant factors influencing lens form accuracy were found to be mold temperature, cooling time, packing pressure, and packing time. These significant factors were used for full factorial experiments, and the experimental data then were used as training and checking data sets for the ANN prediction model. Finally, the ANN prediction model was combined with the GA to construct an inverse model of injection molding. Lens form accuracies of 0.5, 0.7, and \(1\,\upmu \hbox {m}\) were taken as examples for validation, and when the error of the set lens form accuracy target value was within 2 % there were 26, 17, and six sets of the injection molding parameters, respectively, that met the desired form accuracy obtained by using the inverse model. The result indicated that the proposed strategy was successful in identifying process parameters for products with reliable accuracy. In addition, using the GA as a global search algorithm for the optimal solution could further optimize the Taguchi optimal process parameters. The validation experiments revealed that the form accuracy of the lens was improved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700