用户名: 密码: 验证码:
Preparation and Characterization of Freestanding Hierarchical Porous TiO2 Monolith Modified with Graphene Oxide
详细信息    查看全文
  • 作者:Lei Wan ; Mingce Long ; Dongying Zhou ; Liying Zhang ; Weimin Cai
  • 关键词:Photocatalysis ; Titanium dioxide ; Porous monolith ; Graphene oxide
  • 刊名:Nano-Micro Letters
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:4
  • 期:2
  • 页码:90-97
  • 全文大小:344KB
  • 参考文献:[1]M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995). http://?dx.?doi.?org/-/span> 10.1021/cr00033a004CrossRef
    [2]A. Fujishima, X. Zhang and D. A. Tryk, Surf. Sci. Rep. 63, 515 (2008). http://?dx.?doi.?org/-/span> 10.1016/j.surfrep.2008.10.001CrossRef
    [3]M. C. Long and W. M. Cai, Front. Chem. Chin. 6, 190 (2011). http://?dx.?doi.?org/-/span> 10.1007/s11458-011-0243-8CrossRef
    [4]J. G. Yu, H. G. Yu, C. H. Ao, S. C. Lee, J. C. Yu and W. K. Ho, Thin Solid Films 496, 273 (2006). http://?dx.?doi.?org/-/span> 10.1016/j.tsf.2005.08.352CrossRef
    [5]H. Han and R. B. Bai, Ind. Eng. Chem. Res. 50, 11922 (2011). http://?dx.?doi.?org/-/span> 10.1021/ie200787jCrossRef
    [6]D. D. Dionysiou, A. A. Burbano, M. T. Suidan, I. Baudin and J. M. Laine, Environ. Sci. Technol. 36, 3834 (2002). http://?dx.?doi.?org/-/span> 10.1021/es0113605CrossRef
    [7]N. J. Peill and M. R. Hoffmann, Environ. Sci. Technol. 30, 2806 (1996). http://?dx.?doi.?org/-/span> 10.1021/es960047dCrossRef
    [8]G. L. Puma, J. N. Khor and A. Brucato, Environ. Sci. Technol. 38, 3737 (2004). http://?dx.?doi.?org/-/span> 10.1021/es0301020CrossRef
    [9]C. Chen, W. M. Cai, M. C. Long, J. Y. Zhang, B. X. Zhou, Y. H. Wu and D. Y. Wu, J. Hazard. Mater. 178, 560 (2010). http://?dx.?doi.?org/-/span> 10.1016/j.jhazmat. 2010.01.121CrossRef
    [10]S. Cao, N. Yao and K. L. Yeung, J. Sol-Gel Sci. Technol. 46, 323 (2008). http://?dx.?doi.?org/-/span> 10.1007/s10971-008-1701-8CrossRef
    [11]F. Xia and L. Jiang, Adv. Mater. 20, 2842 (2008). http://?dx.?doi.?org/-/span> 10.1002/adma.200800836CrossRef
    [12]G. Calzaferri, Top. Catal. 53, 130 (2009). http://?dx.?doi.?org/-/span> 10.1007/s11244-009-9424-9CrossRef
    [13]H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang and Q. Guo, Adv. Mater. 22, 951 (2010). http://?dx.?doi.?org/-/span> 10.1002/adma. 200902039CrossRef
    [14]X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo and H. Ogawa, Adv. Funct. Mater. 19, 45 (2009). http://?dx.?doi.?org/-/span> 10.1002/adfm.200800519CrossRef
    [15]D. Yang, L. Qi and J. Ma, Adv. Mater. 14, 1543 (2002). http://?dx.?doi.?org/-/span> 10.1002/1521-4095CrossRef
    [16]W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo and H. Ogawa, Chem. Mater. 21, 33 (2009). http://?dx.?doi.?org/-/span> 10.1021/cm702458pCrossRef
    [17]S. Cao, K. L. Yeung and P. L. Yue, Appl. Catal. B-Environ. 68, 99 (2006). http://?dx.?doi.?org/-/span> 10.1016/j.apcatb.2006.07.022CrossRef
    [18]J. Konishi, K. Fujita, K. Nakanishi and K. Hirao, Chem. Mater. 18, 6069 (2006). http://?dx.?doi.?org/-/span> 10.1021/cm0617485CrossRef
    [19]J. Konishi, K. Fujita, K. Nakanishi and K. Hirao, Chem. Mater. 18, 864 (2006). http://?dx.?doi.?org/-/span> 10.1021/cm052155hCrossRef
    [20]W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958). http://?dx.?doi.?org/-/span> 10.1021/ja01539a017CrossRef
    [21]C. Chen, W. M. Cai, M. C. Long, B. X. Zhou, Y. H. Wu, D. Y. Wu and Y. J. Feng, ACS Nano 4, 6425 (2010). http://?dx.?doi.?org/-/span> 10.1021/nn102130mCrossRef
    [22]X. An and J. C. Yu, RSC Adv. 1, 1426 (2011). http://?dx.?doi.?org/-/span> 10.1039/C1RA00382HCrossRef
    [23]J. G. Yu, Y. R. Su and B. Cheng, Adv. Funct. Mater. 17, 1984 (2007). http://?dx.?doi.?org/-/span> 10.1002/adfm. 200600933CrossRef
    [24]L. S. Birks and H. Friedman, J. Appl. Phys. 17, 687 (1946). http://?dx.?doi.?org/-/span> 10.1063/1.1707771CrossRef
    [25]X. C. Wang, J. C. Yu, C. M. Ho, Y. D. Hou and X. Z. Fu, Langmuir 21, 2552 (2005). http://?dx.?doi.?org/-/span> 10.1021/la047979cCrossRef
    [26]G. C. Groen, L. A. A. Peffer and J. Pérez-Ramírez, Micropor. Mesopor. Mater. 60, 1 (2003). http://?dx.?doi.?org/-/span> 10.1016/s1387-1811(03)00339-1CrossRef
    [27]M. C. Long, J. J. Jiang, Y. Li, R.Q. Cao, L. Y. Zhang and W. M. Cai, Nano-Micro Lett. 3, 171 (2011). http://?dx.?doi.?org/-/span> 10.5101/nml.v3i3.p171-177
    [28]J. Grzechulska and A. W. Morawski, Appl. Catal. B-Environ. 46, 415 (2003). http://?dx.?doi.?org/-/span> 10.1016/S0926-3373(03)00265-0CrossRef
    [29]Y. Xie, X. J. Zhao, Y. X. Chen, Q. N. Zhao and Q. H. Yuan, J. Solid State Chem. 180, 3576 (2007). http://?dx.?doi.?org/-/span> 10.1016/j.jssc.2007.10.023CrossRef
    [30]F. Zuo, L. Wang, T. Wu, Z. Y. Zhang, D. Borchardt and P. Y. Feng, J. Am. Chem. Soc. 132, 11856 (2010). http://?dx.?doi.?org/-/span> 10.1021/ja103843dCrossRef
    [31]D. M. Chen, Z. Y. Jiang, J. Q. Geng, Q. Wang and D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007). http://?dx.?doi.?org/-/span> 10.1021/ie061491kCrossRef
    [32]J. Casanovas, J. M. Ricart, J. Rubio, F. Illas and J. M. Jimenez-Mateos, J. Am. Chem. Soc. 118, 8071 (1996). http://?dx.?doi.?org/-/span> 10.1021/ja960338mCrossRef
    [33]A. E. Aleksenskii, V. Y. Osipov, A. Y. Vul- B. Y. Ber, A. B. Smirnov, V. G. Melekhin, G. J. Adriaenssens and K. Iakoubovskii, Phys. Solid State 43, 145 (2001). http://?dx.?doi.?org/-/span> 10.113
  • 作者单位:Lei Wan (15)
    Mingce Long (15)
    Dongying Zhou (15)
    Liying Zhang (25)
    Weimin Cai (15)

    15. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, People’s Republic of China
    25. Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
  • 刊物类别:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 刊物主题:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2150-5551
文摘
Catalyst recovery is one of the most important aspects that restrict the application of TiO2 photocatalyst. In order to reduce restrictions and improve the photocatalytic efficiency, a hierarchical porous TiO2 monolith (PTM) with well-defined macroporous and homogeneous mesoporous structure was prepared by using a sol-gel phase separation method. P123 was used as the mesoporous template and graphene oxide was applied to increase the activity and integrity of the monolithic TiO2. According to scanning electron microscopy and the Barrett-Joyner-Halenda measurements, PTM3 is mainly composed of 10 nm anatase crystallines with 3.6 nm mesopores and 2- μm macropores. Further characterization suggests carbon and nitrogen have been maintained in the PTM during calcinations so as to induce the visible light activity. The PTM with 0.07 wt% graphene oxide dosage shows high efficiency for methyl orange (MO) decolorization under both full spectrum and visible light irradiation (λ>400 nm). Besides, the monolith remains intact and has good photocatalytic stability after four cyclic experiments. Keywords Photocatalysis Titanium dioxide Porous monolith Graphene oxide

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700