用户名: 密码: 验证码:
An adaptive modeling method for time-varying distributed parameter processes with curing process applications
详细信息    查看全文
  • 作者:XinJiang Lu ; Wei Zou ; MingHui Huang
  • 关键词:Distributed parameter systems ; Curing process ; Karhunen–Loève (KL) method ; Fuzzy ; Modeling
  • 刊名:Nonlinear Dynamics
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:82
  • 期:1-2
  • 页码:865-876
  • 全文大小:2,190 KB
  • 参考文献:1.Jiang, M., Deng, H.: Optimal combination of spatial basis functions for the model reduction of nonlinear distributed parameter systems. Commun. Nonlinear Sci. Numer. Simul. 17(12), 5240-248 (2002)MathSciNet CrossRef
    2.Deng, H., Li, H.X.: Spectral-approximation-based intelligent modeling for distributed thermal processes. IEEE Trans. Control Syst. Technol. 13(5), 686-00 (2005)CrossRef
    3.Li, H.X., Deng, H., Zhong, J.: Model-based integration of control and supervision for one kind of curing process. IEEE Trans. Electron. Packag. Manuf. 27(3), 117-86 (2004)CrossRef
    4.Banerjee, S., Cole, J.V., Jensen, K.F.: Nonlinear model reduction strategies for rapid thermal processing systems. IEEE Trans. Semicond. Manuf. 11(2), 266-75 (1998)CrossRef
    5.Hisung, J.C., Pearson, R.A.: Processing diagrams for polymeric die attach adhesives. In Proceedings \(47{{\rm th}}\) IEEE Electronic Components Technology Conference, pp. 536-43 (1997)
    6.Aling, H., Banerjee, S., Bangia, A.K., Cole, V., Ebert, J., Emani-Naeini, A., Jensen, K.F., Kevrekidis, I.G., Shvartsman, S.: Nonlinear model reduction for simulation and control of rapid thermal processing. In: Proceedings of the 1977 American Control Conference, Albuquerque, New Mexico, pp. 2233-238 (1997)
    7.Perkins, R.H., Riley, Terrence J., Gyurcsik, R.S.: Thermal uniformity and stress minimization during rapid thermal processes. IEEE Trans. Semicond. Manuf. 8(3), 272-79 (1995)CrossRef
    8.Butkovskij, A.G.: Optimal Control of Distributed Parameter Systems. Nauka, Moscow (1965). (in Russian)
    9.Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)CrossRef
    10.Ray, W.H.: Advanced Process Control. McGraw-Hill, New York (1981)
    11.Aggelogiannaki, E., Sarimveis, H.: Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models. Comput. Chem. Eng. 32(6), 1225-237 (2008)CrossRef
    12.Deng, H., Li, H.X.: Hybrid intelligence based modeling for nonlinear distributed parameter process with applications to the curing process. IEEE Int. Conf. Syst. Man Cybern. 4, 3506-511 (2003)
    13.Park, H.M., Cho, D.H.: The use of the Karhunen–Loeve decomposition for the modeling of distributed parameter systems. Chem. Eng. Sci. 51, 81-8 (1996)CrossRef
    14.Wang, J.W., Li, H.X., Wu, H.N.: Distributed proportional plus second-order spatial derivative control for distributed parameter systems subject to spatiotemporal uncertainties. Nonlinear Dyn. 76, 2041-058 (2014)MathSciNet CrossRef
    15.Wu, C.J.: Nonlinear Galerkin optimal truncated low-dimensional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 1(1), 36-2 (1996)CrossRef
    16.Ding, Q., Zhang, K.P.: Order reduction and nonlinear behaviors of a continuous rotor system. Nonlinear Dyn. 67, 251-62 (2012)MathSciNet CrossRef
    17.Soderstrom, T., Stoica, P.: System Identification. Prentice-Hall, London (1989)
    18.Guo, L.Z., Billings, S.A.: Sate-space reconstruction and spatiotemporal prediction of lattice dynamical systems. IEEE Trans. Autom. Control 52(4), 622-32 (2007)MathSciNet CrossRef
    19.Coca, D., Billings, S.A.: Identification of finite dimensional models of infinite dimensional dynamical systems. Automatica 38(11), 1851-865 (2002)MathSciNet CrossRef
    20.Lacarbonara, W., Nayfeh, A.H., Kreider, W.: Experimental validation of reduction methods for nonlinear vibrations of distributed-parameter systems: analysis of a buckled beam. Nonlinear Dyn. 17, 95-17 (1998)CrossRef
    21.Nayfeh, A., Lacarbonara, W.: On the discretization of distributed-parameter systems with quadratic and cubic nonlinearities. Nonlinear Dyn. 13, 203-20 (1997)MathSciNet CrossRef
    22.Qi, C.K., Li, H.X.: Kernel-based spatiotemporal multimodeling for nonlinear distributed parameter industrial processes. Ind. Eng. Chem. Res. 51, 13205-3218 (2012)
    23.Christofides, P.D.: Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-reaction Processes. Birkha User, Boston (2001)CrossRef
    24.Shvartsman, S.Y., Theodoropoulos, C., Rico-Martinez, R., Kevrekidis, I.G., Titi, E.S., Mountziaris, T.J.: Order reduction for nonlinear dynamic models of distributed reacting systems. J. Process Control 10, 177-84 (2000)CrossRef
    25.Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1993)
    26.Zhang, J.Z., Liu, Y., Feng, P.H.: Approximate inertial manifolds of burgers equation approached by nonlinear Galerkin’s procedure and its application. Commun. Nonlinear Sci. Numer. Simul. 16(12), 4666-670 (2011)MathSciNet CrossRef
    27.Qi, C.K.: Modeling of nonlinear distributed parameter system for industrial thermal processes. Ph.D. thesis, City University of Hong Kong (2009)
    28.Fernandez-Berdaguer, E.M., Santos, J.E., Sheen, D.: An iterative procedure for estimation of variable coefficients in a hyperbolic system. Appl. Math. Comput. 76(
  • 作者单位:XinJiang Lu (1)
    Wei Zou (1)
    MingHui Huang (1)

    1. State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, Hunan, China
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
Curing processes are nonlinear distributed parameter systems (DPS) with time-varying spatiotemporal dynamics. However, existing data-driven modeling methods have only considered time-varying dynamics in the time direction and paid less attention to those in the spatial direction. This has led to poor modeling accuracy for nonlinear DPS with time-varying spatiotemporal dynamics. In this paper, we propose an adaptive modeling method to estimate the distribution model for this kind of DPS. An adaptive time/space separation is first developed to decompose the time/space coupling dynamics. Time-varying spatial basis functions are then constructed, which can represent time-varying dynamics in the spatial direction. An adaptive T–S fuzzy modeling method is further developed for online learning of unknown dynamics derived from the data. This modeling can adapt to real-time spatiotemporal variation after the time/space synthesis since it utilizes time-varying spatiotemporal dynamics. Finally, curing experiments successfully test and demonstrate the effectiveness of the proposed method. Keywords Distributed parameter systems Curing process Karhunen–Loève (KL) method Fuzzy Modeling

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700