用户名: 密码: 验证码:
Two-level Bregman method for MRI reconstruction with graph regularized sparse coding
详细信息    查看全文
  • 作者:Qiegen Liu 刘且枿/a> ; Hongyang Lu 卢红閿/a> ; Minghui Zhang 张明輿/a>
  • 关键词:magnetic resonance imaging ; graph regularized sparse coding ; dictionary learning ; Bregman iterative method ; alternating direction method
  • 刊名:Transactions of Tianjin University
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:22
  • 期:1
  • 页码:24-34
  • 全文大小:1,489 KB
  • 参考文献:[1]Lustig M, Donoho D L, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging [J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182–1195.CrossRef
    [2]Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306.CrossRef MathSciNet MATH
    [3]Liang D, Liu B, Wang J et al. Accelerating SENSE using compressed sensing [J]. Magnetic Resonance in Medicine, 2009, 62(6): 1574–1584.CrossRef
    [4]Lustig M, Santos J M, Donoho D L et al. kt SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity[C]. In: Proceedings of the 13th Annual Meeting of ISMRM. Seattle, USA, 2006: 2420.
    [5]Ma S, Yin W, Zhang Y et al. An efficient algorithm for compressed MR imaging using total variation and wavelets[C]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA, 2008: 1–8.
    [6]Trzasko J, Manduca A. Highly undersampled magnetic resonance image reconstruction via homotopicminimization [J]. IEEE Transactions on Medical Imaging, 2009, 28(1): 106–121.CrossRef
    [7]Akçakaya M, Nam S, Hu P et al. Compressed sensing with wavelet domain dependencies for coronary MRI: A retrospective study [J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1090–1099.CrossRef
    [8]Chartrand R. Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data[C]. In: Proc IEEE Int Symp Biomed Imag (ISBI). Boston, Massachusetts, USA, 2009: 262–265.
    [9]Kim Y, Nadar M S, Bilgin A. Wavelet-based compressed sensing using Gaussian scale mixtures[C]. In: Proc ISMRM. Stockholm, Sweden, 2010: 4856.
    [10]Qiu C, Lu W, Vaswani N. Real-time dynamic MR image reconstruction using Kalman filtered compressed sensing[C]. In: Proc IEEE Int Conf Acoustics, Speech, Signal Process. Taipei, Taiwan, China, 2009: 393–396.
    [11]Qu X, Zhang W, Guo D et al. Iterative thresholding compressed sensing MRI based on contourlet transform [J]. Inverse Problems in Science and Engineering, 2010, 18(6): 737–758.CrossRef MathSciNet MATH
    [12]Gho S M, Nam Y, Zho S Y et al. Three dimension double inversion recovery gray matter imaging using compressed sensing [J]. Magnetic Resonance Imaging, 2010, 28(10): 1395–1402.CrossRef
    [13]Guerquin-Kern M, Haberlin M, Pruessmann K P et al. A fast wavelet-based reconstruction method for magnetic resonance imaging [J]. IEEE Transactions on Medical Imaging, 2011, 30(9): 1649–1660.CrossRef
    [14]Chen L, Schabel M C, Di Bella E V R. Reconstruction of dynamic contrast enhanced magnetic resonance imaging of the breast with temporal constraints [J]. Magnetic Resonance Imaging, 2010, 28(5): 637–645.CrossRef
    [15]Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning [J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028–1041.CrossRef
    [16]Liu Q, Wang S, Yang K et al. Highly undersampled magnetic resonance imaging reconstruction using two-level Bregman method with dictionary updating [J]. IEEE Transactions on Medical Imaging, 2013, 32(7): 1290–1301.CrossRef MathSciNet
    [17]Qu X, Guo D, Ning B et al. Undersampled MRI reconstruction with patch-based directional wavelets [J]. Magnetic Resonance Imaging, 2012, 30(7): 964–977.CrossRef
    [18]Qu X, Hou Y, Lam F et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator [J]. Medical Image Analysis, 2014, 18(6): 843–856.CrossRef
    [19]Zheng M, Bu J, Chen C et al. Graph regularized sparse coding for image representation [J]. IEEE Transactions on Image Processing, 2011, 20(5): 1327–1336.CrossRef MathSciNet
    [20]Liu Q, Wang S, Luo J. A novel predual dictionary learning algorithm [J]. Journal of Visual Communication and Image Representation, 2012, 23(1): 182–193.CrossRef
    [21]Yin Wotao, Osher Stanley, Goldfarb Donald et al. Bregman iterative algorithms for 1 -minimization with applications to compressed sensing [J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143–168.CrossRef MathSciNet MATH
    [22]Osher S, Burger M, Goldfarb D et al. An iterative regularization method for total variation-based image restoration [J]. Multiscale Modeling & Simulation, 2005, 4(2): 460–489.CrossRef MathSciNet MATH
    [23]Goldstein T, Osher S. The split Bregman method for ?1 -regularized problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323–343.CrossRef MathSciNet MATH
    [24]Zhang X, Burger M, Bresson X et al. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction [J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 253–276.CrossRef MathSciNet MATH
    [25]Ramani S, Fessler J A. Parallel MR image reconstruction using augmented Lagrangian methods [J]. IEEE Transactions on Medical Imaging, 2011, 30(3): 694–706.CrossRef
    [26]Chang T C, He L, Fang T. MR image reconstruction from sparse radial samples using Bregman iteration[C]. In: Proceedings of the 13th Annual Meeting of ISMRM. Seattle, USA, 2006: 696.
    [27]Liu B, King K, Steckner M et al. Regularized sensitivity encoding(SENSE)reconstruction using Bregman iterations [J]. Magnetic Resonance in Medicine, 2009, 61(1): 145–152.CrossRef
    [28]Liu Q, Luo J, Wang S et al. An augmented Lagrangian multi-scale dictionary learning algorithm [J]. EURASIP Journal on Advances in Signal Processing, 2011, (1): 1–16.
    [29]Du H, Lam F. Compressed sensing MR image reconstruction using a motion-compensated reference [J]. Magnetic Resonance Imaging, 2012, 30(7): 954–963.CrossRef
    [30]Chen Y, Hager W, Huang F et al. Fast algorithms for image reconstruction with application to partially parallel MR imaging [J]. SIAM Journal on Imaging Sciences, 2012, 5(1): 90–118.CrossRef MathSciNet
    [31]Lin Q, Guo W, Fu X et al. MR image reconstruction by patch-based sparse representation [J]. Journal of Theoretical and Applied Information Technology, 2013, 49(1): 107–112.
    [32]American Radiology Services. [EB/OL]. Available: http://​www3.​ americanradiology. com/pls/web1/wwmain. home. 2013.
    [33]Ning B, Qu X, Guo D et al. Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization [J]. Magnetic Resonance Imaging, 2013, 31(9): 1611–1622.CrossRef
  • 作者单位:Qiegen Liu 刘且根 (1)
    Hongyang Lu 卢红阳 (1)
    Minghui Zhang 张明辉 (1)

    1. Department of Electronic Information Engineering, Nanchang University, Nanchang, 330031, China
  • 刊物类别:Engineering
  • 刊物主题:Chinese Library of Science
  • 出版者:Tianjin University
  • ISSN:1995-8196
文摘
In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700