用户名: 密码: 验证码:
Phytosterol content and the campesterol:sitosterol ratio influence cotton fiber development: role of phytosterols in cell elongation
详细信息    查看全文
  • 作者:Shasha Deng ; Ting Wei ; Kunling Tan ; Mingyu Hu ; Fang Li
  • 关键词:cotton fiber ; phytosterols ; gene expression ; tridemorph ; ligon lintless ; 1
  • 刊名:Science China Life Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:59
  • 期:2
  • 页码:183-193
  • 全文大小:1,061 KB
  • 参考文献:Asami, T., Nakano, T., and Fujioka, S. (2005). Plant Brassinosteroid Hormones. In: Gerald, L., ed. Vitamins & Hormones. New York: Academic Press 479–504.
    Basra, A.S., and Sukumar, S. (2000). Growth regulation of cotton fibers. In: Basra, A.S., ed. Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing. New York: Food Products Press 47–58.
    Basra, A.S., and Malik, C.P. (1984). Development of the cotton fiber. Int Rev Cytol 89, 65–113.CrossRef
    Beasley, C.A., and Ting, I.P. (1973). The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. Am J Bot 60, 130–139.CrossRef
    Beasley, C.A., and Ting, I.P. (1974). The effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules. Am J Bot 61, 188–194.CrossRef
    Benveniste, P. (2004). Biosynthesis and accumulation of sterols. Annu Rev Plant Biol 55, 429–457.CrossRef PubMed
    Bolton, J.J., Soliman, K.M., Wilkins, T.A., and Jenkins, J.N. (2009). Aberrant expression of critical genes during secondary cell wall biogenesis in a cotton mutant, ligon lintless-1 (li-1). Comp Funct Genomics 2009, 659–601.CrossRef
    Boutté, Y., and Grebe, M. (2009). Cellular processes relying on sterol function in plants. Curr Opin Plant Biol 12, 705–713.CrossRef PubMed
    Cao, X. (2015). Whole genome sequencing of cotton—a new chapter in cotton genomics. Sci China Life Sci 58, 515–516.CrossRef PubMed
    Carland, F.M., Fujioka, S., Takatsuto, S., Yoshida, S., and Nelson, T. (2002). The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14, 2045–2058.PubMedCentral CrossRef PubMed
    Choe, S., Tanaka, A., Noguchi, T., Fujioka, S., Takatsuto, S., Ross, A.S., Tax, F.E., Yoshida, S., and Feldmann, K.A. (2000). Lesions in the sterol Delta (7) reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J 21, 431–443.CrossRef PubMed
    Chu, Z., Li, L., Song, L., and Xue, H. (2006). Advances on brassinosteroid biosynthesis and functions. Chin Bull Botany 23, 543–555
    Claude, C., Alain, R., Maryse, T., and Yves, S. (1996). Effect of tridemorph and fenpropimorph on sterol composition in fenugreek. Phytochemistry 41, 423–431.CrossRef
    Clouse, S.D. (2000). Plant development: a role for sterols in embryogenesis. Curr Biol 10, R601–R604.CrossRef PubMed
    Clouse, S.D. (2002). Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell 14, 1995–2000.PubMedCentral CrossRef PubMed
    Deng, F., Tu, L., Tan, J., Li, Y., Nie, Y., and Zhang, X. (2012). GbPDF1 is involved in cotton fiber initiation via the core cis-element HDZIP2ATATHB2. Plant Physiol 158, 890–904.PubMedCentral CrossRef PubMed
    Fridman, Y., and Savaldi-Goldstein, S. (2013). Brassinosteroids in growth control: how, when and where. Plant Sci 209, 24–31.CrossRef PubMed
    Fujioka, S., and Yokota, T. (2003). Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54, 137–164.CrossRef PubMed
    Gou, J., Wang, L., Chen, S., Hu, W., and Chen, X. (2007). Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res 17, 422–434.PubMed
    Gudesblat, G.E., and Russinova, E. (2011). Plants grow on brassinosteroids. Curr Opin Plant Biol 14, 530–537.CrossRef PubMed
    He, J.X., Fujioka, S., Li, T.C., Kang, S.G., Seto, H., Takatsuto, S., Yoshida, S., and Jang, J.C. (2003). Sterols regulate development and gene expression in Arabidopsis. Plant Physiol 131, 1258–1269.PubMedCentral CrossRef PubMed
    Kasukabe, Y., Fujisawa, Y., Nishiguchi, K., Maekawa, S., Allen, Y., and Dale, R. (2001) Production of cotton fiber with improved fiber characteristics. United States Patent, 20010018773.
    Kim, H.B., Schaller, H., Goh, C.H., Kwon, M., Choe, S., An, C.S., Durst, F., Feldmann, K.A., and Feyereisen, R. (2005). Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity. Plant Physiol 138, 2033–2047.PubMedCentral CrossRef PubMed
    Lee, J.J., Woodward, A.W., and Chen, Z.J. (2007). Gene expression changes and early events in cotton fibre development. Ann Bot 100, 1391–1401.PubMedCentral CrossRef PubMed
    Li, F., Fan, G., Lu, C., Xiao, G., Zou, C., Kohel, R.J., Ma, Z., Shang, H., Ma, X., Wu, J., Liang, X., Huang, G., Percy, R.G., Liu, K., Yang, W., Chen, W., Du, X., Shi, C., Yuan, Y., Ye, W., Liu, X., Zhang, X., Liu, W., Wei, H., Wei, S., Huang, G., Zhang, X., Zhu, S., Zhang, H., Sun, F., Wang, X., Liang, J., Wang, J., He, Q., Huang, L., Wang, J., Cui, J., Song, G., Wang, K., Xu, X., Yu, J., Zhu, Y., and Yu, S. (2015). Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechol 33, 524–530.CrossRef
    Liu, K., Sun, J., Yao, L., and Yuan, Y. (2012). Transcriptome analysis reveals critical genes and key pathways for early cotton fiber elongation in ligon lintless-1 mutant. Genomics 100, 42–50.CrossRef PubMed
    Luo, M., Tan, K., Xiao, Z., Hu, M., Liao, P., and Chen, K. (2008). Cloning and expression of two sterol C-24 methyltransferase genes from upland cotton (Gossypium hirsuturm L.). J Genet Genom 35, 357–363.CrossRef
    Luo, M., Xiao, Y., Li, X., Lu, X., Deng, W., Li, D., Hou, L., Hu, M., Li, Y., and Pei, Y. (2007). GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J 51, 419–430.CrossRef PubMed
    Meinert, M.C., and Delmer, D.P. (1977). Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol 59, 1088–1097.PubMedCentral CrossRef PubMed
    Men, S., Boutte, Y., Ikeda, Y., Li, X., Palme, K., Stierhof, Y.D., Hartmann, M.A., Moritz,T., and Grebe, M. (2008). Sterol-dependent endocytosis mediates postcytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat Cell Biol 10, 237–244.CrossRef PubMed
    Neelakandan, A.K., Nguyen, H.T.M., Kumar, R., Tran, L.S.P., Guttikonda, S.K., Quach, T.N., Aldrich, D.L., Nes, W.D., and Nguyen, H.T. (2010). Molecular characterization and functional analysis of Glycine max sterol methyl transferase 2 genes involved in plant membrane sterol biosynthesis. Plant Mol Biol 74, 503–518.CrossRef PubMed
    Ovečka, M., Berson, T., Beck, M., Derksen, J., Šamaj, J., Baluška, F., and Lichtscheidl, I.K. (2010). Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana. Plant Cell 22, 2999–3019.PubMedCentral CrossRef PubMed
    Padmalatha, K.V., Patil, D.P., Kumar, K., Dhandapani, G., Kanakachari, M., Phanindra, M.L.V., Kumar, S., Mohan, T.C., Jain, N., Prakash, A.H., Vamadevaiah, H., Katageri, I.S., Leelavathi, S., Reddy, M.K., Kumar, P.A., and Reddy, V.S. (2012). Functional genomics of fuzzless-lintless mutant of Gossypium hirsutum L. cv. MCU5 reveal key genes and pathways involved in cotton fibre initiation and elongation. BMC Genomics 13, 624.PubMedCentral CrossRef PubMed
    Pei, Y. (2015). The homeodomain-containing transcription factor, GhHOX3, is a key regulator of cotton fiber elongation. Sci China Life Sci 58, 309–310.CrossRef PubMed
    Ryser, U. (2000). Cotton fiber initiation and histodifferentiation. In: Basra, A.S., ed. Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing. New York: Food Products Press 1–34.
    Schaeffer, A., Bronner, R., Benveniste, P., and Schaller, H. (2001). The ratio of campesterol to sitosterol which modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2-1, Plant J 25, 605–615.CrossRef PubMed
    Schaller, H. (2003). The role of sterols in plant growth and development. Prog Lipid Res 42, 163–175.CrossRef PubMed
    Schaller, H. (2004). New aspects of sterol biosynthesis in growth and development of higher plants. Plant Physiol Biochem 42, 465–476.CrossRef PubMed
    Schrick, K., Fujioka, S., Takatsuto, S., Stierhof, Y.D., Stransky, H., Yoshida, S., and Jürgens, G. (2004). A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. Plant J 38, 227–243.CrossRef PubMed
    Schrick, K., Mayer, U., Horrichs, A., Kuhnt, C., Bellini, C., Dangl, J., Schmidt, J., and Jürgens, G. (2000). FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev 14,1471–1484.PubMedCentral PubMed
    Schrick, K., Mayer, U., Martin, G., Bellini, C., Kuhnt, C., Schmidt, J., and Jürgens, G. (2002). Interactions between sterol biosynthesis genes in embryonic development of Arabidopsis. Plant J 31, 61–73.CrossRef PubMed
    Schubert, A.M., Benedict, C.R., Berlin, J.D., and Kohel, R.J. (1973). Cotton fiber development-kinetics of cell elongation and secondary wall thickening. Crop Sci 13, 704–709.CrossRef
    Seagull, R.W., and Giavalis, S. (2004). Pre- and post-anthesis application of exogenous hormones alters fiber production in Gossypium hirsutum L., cultivar Maxxa GTO. J Cotton Sci 8, 105–111.
    Shan, C., Shangguan, X., Zhao, B., Zhang, X., Chao, L., Yang, C., Wang, L., Zhu, H., Zeng, Y., Guo, W., Zhou, B., Hu, G., Guan, X., Chen, Z., Wendel, J., Zhang, T., and Chen, X. (2014). Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun 5, 5519.PubMedCentral CrossRef PubMed
    Shi, Y., Zhu, S., Mao, X., Feng, J., Qin, Y., Zhang, L., Cheng, J., Wei, L., Wang, Z., and Zhu, Y. (2006). Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18, 651–664.PubMedCentral CrossRef PubMed
    Souter, M., Topping, J., Pullen, M., Friml, J., Palme, K., Hackett, R., Grierson, D., and Lindsey, K. (2002). hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell 14, 1017–1031.PubMedCentral CrossRef PubMed
    Souter, M.A., Pullen, M.L., Topping, J.F., Zhang, X., and Lindsey, K. (2004). Rescue of defective auxin-mediated gene expression and root meristem function by inhibition of ethylene signalling in sterol biosynthesis mutants of Arabidopsis. Planta 219, 773–783.CrossRef PubMed
    Sun, Y., and Allen, R.D. (2005). Functional analysis of the BIN2 genes of cotton. Mol Genet Genomics 274, 51–59.CrossRef PubMed
    Sun, Y., Fokar, M., Asami, T., Yoshida, S., and Allen, R.D. (2004). Characterization of the brassinosteroid insensitive 1 genes of cotton. Plant Mol Biol 54, 221–232.CrossRef PubMed
    Sun, Y., Veerabomma, S., Abdel-Mageed, H.A., Fokar, M., Asami, T., Yoshida, S., and Allen, R.D. (2005). Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol 46, 1384–1391.CrossRef PubMed
    Suzuki, M., Nakagawa, S., Kamide, Y., Kobayashi, K., Ohyama, K., Hashinokuchi, H., Kiuchi, R., Saito, K., Muranaka, T., and Nagata, N. (2009). Complete blockage of the mevalonate pathway results in male gametophyte lethality. J Exp Bot 60, 2055–2064.PubMedCentral CrossRef PubMed
    Tan, K., Hu, M., Li, X., Qin, S., Li, D., Luo, X., Zhao, J., Zang, Z., Li, B., Pei, Y., and Luo, M. (2009). Molecular identification and expression analysis of GhCYP51G1 gene, a homologue of obtusifoliol-14alpha-demethylase gene, from upland cotton. Acta Agronom Sin 35, 1194–1201.
    Topping, J.F., May, V.J., Muskett, P.R., and Lindsey, K. (1997). Mutations in the HYDRA1 gene of Arabidopsis perturb cell shape and disrupt embryonic and seedling morphogenesis. Development 124, 4415–4424.PubMed
    Wanjiea, S.W., Weltib, R., Moreauc, R.A., and Chapman, K.D. (2005). Identification and quantification of glycerolipids in cotton fibers: reconciliation with metabolic pathway predictions from DNA databases. Lipids 40, 773–785.CrossRef
    Whitaker, B.D., and Gapper, N.E. (2008). Ripening-specific stigmasterol increase in tomato fruit is associated with increased sterol C-22 desaturase (CYP710A11) gene expression. J Agric Food Chem 56, 3828–3835.CrossRef PubMed
    Willemsen, V., Friml, J., Grebe, M., Toorn, A.V.D., Palme, K., and Scheres, B. (2003). Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15, 612–625.PubMedCentral CrossRef PubMed
    Williams, M.E. (2011). Brassinosteroids: plant steroid hormones. Teaching Tools in Plant Biology: Lecture Notes. Plant Cell doi/10.1105/tpc. 110.tt0910.
    Xiao, Y., Li, D., Yin, M., Li, X., Zhang, M., Wang, Y., Dong, J., Zhao, J., Luo, M., Luo, X., Hou, L., Lin, H., and Pei, Y. (2010). Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. J Plant Physiol 167, 829–837.CrossRef PubMed
    Yang, S., Cheung, F., Lee, J.J., Ha, M., Wei, N., Sze, S.H., Stelly, D.M., Thaxton, P., Triplett, B., Town, C.D., and Chen, Z. (2006). Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47, 761–775.PubMedCentral CrossRef
    Yang, Z., Zhang, C., Yang, X., Liu, K., Wu, Z., Zhang, X., Zheng, W., Xun, Q., Liu, C., Lu, L., Yang, Z., Qian, Y., Xu, Z., Li, C., Li, J., and Li, F. (2014). PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytol 203, 437–448.CrossRef PubMed
    Zang, Z., Hu, M., Li, X., Chen, K., Liao, P., Xiao, Y., Hou, L., Pei, Y., Luo, M. (2011). Molecular identification and expression analysis of GhHYDRA1 gene, a homologue of HYDRA1 gene from upland cotton (Gossypium hirsutum L.). Agri Sci China 10, 41–48.CrossRef
    Zhang, M., Zheng, X., Song, S., Zeng, Q., Hou, L., Li, D., Zhao, J., Wei, Y., Li, X., Luo, M., Xiao, Y., Luo, X., Zhang, J., Xiang, C., and Pei, Y. (2011). Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29, 453–458.CrossRef PubMed
    Zhang, T., Hu, Y., Jiang, W., Fang, L., Guan, X., Chen, J., Zhang, J., Saski, C.A., Scheffler, B.E., Stelly, D.M., Hulse-Kemp, A.M., Wan, Q., Liu, B., Liu, C.X., Wang, S., Pan, M.Q., Wang, Y.K., Wang, D., Ye, W., Chang, L., Zhang, W., Song, Q., Kirkbride, R.C., Chen, X., Dennis, E., Llewellyn, D.J., Peterson, D.G., Thaxton, P., Jones, D.C., Wang, Q., Xu, X., Zhang, H., Wu, H., Zhou, L., Mei, G., Chen, S., Tian, Y., Xiang, D., Li, X., Ding, J., Zuo, Q., Tao, L., Liu, Y., Li, J., Lin, Y., Hui, Y., Cao, Z., Cai, C., Zhu, X., Jiang, Z., Zhou, B., Guo, W., Li, R., and Chen, Z. (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechol 33, 531–537.CrossRef
  • 作者单位:Shasha Deng (1)
    Ting Wei (1)
    Kunling Tan (1)
    Mingyu Hu (1)
    Fang Li (1)
    Yunlan Zhai (1)
    Shue Ye (1)
    Yuehua Xiao (1)
    Lei Hou (1)
    Yan Pei (1)
    Ming Luo (1)

    1. Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, 400716, China
  • 刊物主题:Life Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1889
文摘
Phytosterols play an important role in plant growth and development, including cell division, cell elongation, embryogenesis, cellulose biosynthesis, and cell wall formation. Cotton fiber, which undergoes synchronous cell elongation and a large amount of cellulose synthesis, is an ideal model for the study of plant cell elongation and cell wall biogenesis. The role of phytosterols in fiber growth was investigated by treating the fibers with tridemorph, a sterol biosynthetic inhibitor. The inhibition of phytosterol biosynthesis resulted in an apparent suppression of fiber elongation in vitro or in planta. The determination of phytosterol quantity indicated that sitosterol and campesterol were the major phytosterols in cotton fibers; moreover, higher concentrations of these phytosterols were observed during the period of rapid elongation of fibers. Furthermore, the decrease and increase in campesterol:sitosterol ratio was associated with the increase and decease in speed of elongation, respectively, during the elongation stage. The increase in the ratio was associated with the transition from cell elongation to secondary cell wall synthesis. In addition, a number of phytosterol biosynthetic genes were down-regulated in the short fibers of ligon lintless-1 mutant, compared to its near-isogenic wild-type TM-1. These results demonstrated that phytosterols play a crucial role in cotton fiber development, and particularly in fiber elongation. Keywords cotton fiber phytosterols gene expression tridemorph ligon lintless-1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700