用户名: 密码: 验证码:
Application of a New Wearable Augmented Reality Video See-Through Display to Aid Percutaneous Procedures in Spine Surgery
详细信息    查看全文
  • 关键词:Minimally invasive surgery ; Augmented reality and visualization ; Computer assisted intervention ; Interventional imaging ; Spine surgery
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9769
  • 期:1
  • 页码:43-54
  • 全文大小:3,870 KB
  • 参考文献:1.Soper, N.J., Stockmann, P.T., Dunnegan, D.L., Ashley, S.W.: Laparoscopic cholecystectomy: the new ‘gold standard’? Arch. Surg. 127, 917–921 (1992). Discussion, 921–913CrossRef
    2.Legorreta, A.P., Silber, J.H., Costantino, G.N., Kobylinski, R.W., Zatz, S.L.: Increased cholecystectomy rate after the introduction of laparoscopic cholecystectomy. JAMA 270, 1429–1432 (1993)CrossRef
    3.Oppenheimer, J.H., DeCastro, I., McDonnell, D.E.: Minimally invasive spine technology and minimally invasive spine surgery: a historical review. Neurosurg. Focus 27, E9 (2009)CrossRef
    4.Deramond, H., Sebert, J.L., Rosat, P., Fardellone, P., Romero, C.A., Berlemont, F.: Destructive spondyloarthropathy in chronic haemodialysis patients: current data and radiological aspects. J. Neuroradiol. 14, 27–38 (1987)
    5.Peh, W.C., Gilula, L.A.: Percutaneous vertebroplasty: indications, contraindications, and technique. Br. J. Radiol. 76, 69–75 (2003)CrossRef
    6.Garfin, S.R., Yuan, H.A., Reiley, M.A.: New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine 26, 1511–1515 (2001)CrossRef
    7.Peh, W.C.G., Gilula, L.A.: Percutaneous vertebroplasty: indications, contraindications, and technique. Br. J. Radiol. 76, 69–75 (2003)CrossRef
    8.Ortiz, A.O., Natarajan, V., Gregorius, D.R., Pollack, S.: Significantly reduced radiation exposure to operators during kyphoplasty and vertebroplasty procedures: methods and techniques. AJNR Am. J. Neuroradiol. 27, 989–994 (2006)
    9.Choi, H.C.: Fluoroscopic radiation exposure during percutaneous kyphoplasty. J. Korean Neurosurg. Soc. 49, 37–42 (2011)CrossRef
    10.Braak, S.J., Zuurmond, K., Aerts, H.C., van Leersum, M., Overtoom, T.T., van Heesewijk, J.P., van Strijen, M.J.: Feasibility study of needle placement in percutaneous vertebroplasty: cone-beam computed tomography guidance versus conventional fluoroscopy. Cardiovasc. Intervent. Radiol. 36, 1120–1126 (2013)CrossRef
    11.Hoheisel, M., Skalej, M., Beuing, O., Bill, U., Klingenbeck-Regn, K., Petzold, R., Nagel, M.H.: Kyphoplasty interventions using a navigation system and C-arm CT data: first clinical results, pp. 72580E–72588. (2009)
    12.Bichlmeier, C., Ockert, B., Heining, S.M., Ahmadi, A., Navab, N.: Stepping into the operating theater: ARAV - augmented reality aided vertebroplasty. In: 7th IEEE International Symposium on Mixed and Augmented Reality 2008, Proceedings, pp. 165–166 (2008)
    13.Abe, Y., Sato, S., Kato, K., Hyakumachi, T., Yanagibashi, Y., Ito, M., Abumi, K.: A novel 3D guidance system using augmented reality for percutaneous vertebroplasty. J. Neurosurg. Spine 19, 492–501 (2013)CrossRef
    14.Fritz, J., Paweena, U., Ungi, T., Flammang, A.J., Kathuria, S., Fichtinger, G., Iordachita, I.I., Carrino, J.A.: MR-guided vertebroplasty with augmented reality image overlay navigation. Cardiovasc. Intervent. Radiol. 37, 1589–1596 (2014)CrossRef
    15.Sembrano, J.N., Yson, S.C., Polly Jr., D.W., Ledonio, C.G., Nuckley, D.J., Santos, E.R.: Comparison of nonnavigated and 3-dimensional image-based computer navigated balloon kyphoplasty. Orthopedics 38, 17–23 (2015)CrossRef
    16.Kersten-Oertel, M., Jannin, P., Collins, D.L.: The state of the art of visualization in mixed reality image guided surgery. Comput. Med. Imag. Graph. 37, 98–112 (2013)CrossRef
    17.Cutolo, F., Badiali, G., Ferrari, V.: Human-PnP: ergonomic AR interaction paradigm for manual placement of rigid bodies. In: Linte, C., Yaniv, Z., Fallavollita, P. (eds.) Augmented Environments for Computer-Assisted Interventions, vol. 9365, pp. 50–60. Springer, Heidelberg (2015)CrossRef
    18.Sielhorst, T., Feuerstein, M., Navab, N.: Advanced medical displays: a literature review of augmented reality. J. Disp. Technol. 4, 451–467 (2008)CrossRef
    19.Cutolo, F., Parchi, P.D., Ferrari, V.: Video see through AR head-mounted display for medical procedures. In: International Symposium on Mixed and Augmented Reality, pp. 393–396 (2014)
    20.Ferrari, V., Cutolo, F., Calabro, E.M., Ferrari, M.: HMD video see though AR with unfixed cameras vergence. In: International Symposium on Mixed and Augmented Reality, pp. 265–266 (2014)
    21.Ferrari, V., Megali, G., Troia, E., Pietrabissa, A., Mosca, F.: A 3-D mixed-reality system for stereoscopic visualization of medical dataset. IEEE Trans. Bio-Med. Eng. 56, 2627–2633 (2009)CrossRef
    22.Megali, G., Ferrari, V., Freschi, C., Morabito, B., Turini, G., Troia, E., Cappelli, C., Pietrabissa, A., Tonet, O., Cuschieri, A., Dario, P., Mosca, F.: EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery. Int. J. Med. Robot. Comp. 4, 242–251 (2008)CrossRef
    23.Zhang, Z.Y.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. 22, 1330–1334 (2000)CrossRef
    24.Navab, N., Heining, S.M., Traub, J.: Camera Augmented Mobile C-Arm (CAMC): calibration, accuracy study, and clinical applications. IEEE Trans. Med. Imaging 29, 1412–1423 (2010)CrossRef
    25.Ferrari, V., Carbone, M., Cappelli, C., Boni, L., Melfi, F., Ferrari, M., Mosca, F., Pietrabissa, A.: Value of multidetector computed tomography image segmentation for preoperative planning in general surgery. Surg. Endosc. 26, 616–626 (2012)CrossRef
    26.Condino, S., Carbone, M., Ferrari, V., Faggioni, L., Peri, A., Ferrari, M., Mosca, F.: How to build patient-specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators. Int. J. Med. Robot. 7, 202–213 (2011)CrossRef
    27.Kersten-Oertel, M., Jannin, P., Collins, D.L.: DVV: a taxonomy for mixed reality visualization in image guided surgery. IEEE Trans. Vis. Comput. Graph. 18, 332–352 (2012)CrossRef
    28.Badiali, G., Ferrari, V., Cutolo, F., Freschi, C., Caramella, D., Bianchi, A., Marchetti, C.: Augmented reality as an aid in maxillofacial surgery: Validation of a wearable system allowing maxillary repositioning. J. Cranio Maxill Surg. 42, 1970–1976 (2014)CrossRef
    29.Parrini, S., Cutolo, F., Freschi, C., Ferrari, M., Ferrari, V.: Augmented reality system for freehand guide of magnetic endovascular devices. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 490–493 (2014)
    30.Ferrari, V., Viglialoro, R.M., Nicoli, P., Cutolo, F., Condino, S., Carbone, M., Siesto, M., Ferrari, M.: Augmented reality visualization of deformable tubular structures for surgical simulation. Int. J. Med. Robot. Comput. Assist. Surg. (IMRCAS) (2015)
    31.Bichlmeier, C., Wimme, F., Heining, S.M., Navab, N.: Contextual anatomic mimesis hybrid in-situ visualization method for improving multi-sensory depth perception in medical augmented reality. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR 2007, pp. 129–138 (2007)
  • 作者单位:Fabrizio Cutolo (15)
    Marina Carbone (15)
    Paolo D. Parchi (15) (16)
    Vincenzo Ferrari (15) (17)
    Michele Lisanti (15) (16)
    Mauro Ferrari (15) (18)

    15. Department of Translational Research and New Technologies in Medicine and Surgery, EndoCAS Center, University of Pisa, Pisa, Italy
    16. 1st Orthopaedic Clinic, University of Pisa, Pisa, Italy
    17. Information Engineering Department, University of Pisa, Pisa, Italy
    18. Department of Vascular Surgery, Pisa University Medical School, Pisa, Italy
  • 丛书名:Augmented Reality, Virtual Reality, and Computer Graphics
  • ISBN:978-3-319-40651-0
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
  • 卷排序:9769
文摘
In mini-invasive surgery, the surgeon operates without a direct visualization of the patient’s anatomy. In image-guided surgery, solutions based on augmented reality (AR) represent the most promising ones. The aim of this study was to evaluate the efficacy of a new wearable AR system as aid in the performance of percutaneous procedures in spine surgery. Our solution is based on a video see-through head mounted display (HMD) and it allows the augmentation of video frames acquired by two external cameras with the rendering of patient-specific 3D models obtained elaborating radiological images. We tested the system on an in vitro setup intended to simulate the reaching of a lumbar pedicle. An experienced surgeon performed the percutaneous task wearing the HMD. System accuracy was evaluated through post-operative CT scan, measuring the maximum distance between the planned and obtained trajectories inside the pedicle canal. The mean insertion error was of 1.18 ±0.16 mm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700